A Simpifified Field Method for Capacity Evaluation of Driven Piles

Les Deparment of Transporiation

Research and Developmenî Turner--:airbank Highway Research Center 6300 Georgetown Pike McLean, Virginia 221C1-2296

This report presents the results of a study on a simplified fielc method for the capacity eva: uation of driven piles based on dynamic measurements during driving. The simplified metinod, entitled the Energy foproach is proposec as an aiternative to other dynamic analyses that are based on one-dimersionat wave equation sofutions. Based on the analys is of a earce cata set of oyer 120 pites load test to foilure uith corresponding dymamic measuremerts, and an add:tiona: 403 PDR monitored piles, the authors found the Erergy Approach method providec excellent evaluations of pile capacity.

NOTIE

This document is disseminated under the sponsorship of the Jepertment of Transportation in the interest of informetion exchange. The Unitad States Governmert assumes no liability for its contents or use thereof. The contents of this report reflect the views of the contractor, wic is responsibie for the accuracy of the data presented herein. The contents do no: cecessarily reflect the official policy of the Depariment of Transportation. Tinis report does not constitute a standard, specification, or regulation.
-The United States Government does not endorse products or manuracturers. Trade or manufacturers' names appear herein only because they are considared essential to the object of this cocument.

15. Supplementary Notes

Contracting Officer's Technical Representative (COTR) - Carl Ealy, HNR-30

16. Abstrae

A simplified method based on energy balance between the total energy delivered to the pile and the work done by the pile/soil systems is proposed. This method, entitled the Energy Approach, assumes elastoplastic load displacement pile-soil relations. Calculated transferred energy and maximum pile displacement from the measured data, together with the field blow count, are used as input parameters. This method does not consider the propagation process and is aimed at providing a real-time pile-capacity prediction in the field.

Two large data sets were gathered at the University of Massachusetts at Lowell. One, PD/LT, contains 208 dynamic measurement cases on 120 piles monitored during driving, followed by a static load test to failure. The data were obtained from various sources and reflect variable combinations of soil-pile-driving systems. The other, PD, contains data on 403 piles monitored during driving and was provided by Pile Dynamics Inc. of Cleveland, Ohio. All cases were examined and analyzed.

The Energy Approach method was found to provide excellent evaluations of pile capacity under all conditions. The method is, therefore, proposed to be used in the field for instantaneous capacity determination. The predictions of this method were found on the average to provide more accurate evaluations than the sophisticated office methods, especially for records obtained at the end of initial driving. The Energy Approach is, therefore, also proposed to be used as an independent tool to evaluate the office methods.

17. Koy Words

Driven piles, dynamic analysis of piles, Energy Approach, CAPWAP, TEPWAP, driven-pile capacity.

18. Distribution Statement

No restrictions. This document is available to the public through the National
Technical Information Service, Springfield, Virginia 22161.

19. Security Classit. (ol ihis report) Unclassified	20. Security Classit. (of this page) Unclassified	21. No. of Pages 313	22. Pnca

Form DOTF 1700.7 (3.72) Reproduction of complerad page authorized

PREFACE

This research study presents a simplified field method for the capacity evaluation of driven piles based on dynamic measurements during driving.

Dynamic analyses of piles are methods aimed at the prediction of pile behavior under static loads based on the pile response during installation. These methods are based upon the concept that pile penetration under each blow induces failure of the soil, hence, an instantaneous load test is performed.

The reliability of these analyses is enhanced through data obtained by dynamic measurements during driving. Two methods are currently employed for the analysis of the measured data. Both methods are based on the solution of the one-dimensional wave equation for the stress wave traveling through the pile following the hammer's impact. One, an office analysis, utilizes a numerical solution of a mathematical model for the pile-soil system under measured boundary conditions (e.g., the computer codes CAPWAP or TEPWAP). The other, a field analysis known as the "Case Method," which is based on a simplified closed-form solution and empirical correlations, provides an instantaneous evaluation of the pile capacity following each hammer blow.

Substantial experience suggests the existence of major limitations to the field method. In addition, no large-scale evaluation has been carried out for the office methods since their development.

A simplified method based on energy balance is proposed as an alternative field method. This method, entitled the Energy Approach, assumes elasto-plastic load displacement pile-soil relations. Calculated transferred energy and maximum pile displacement from the measured data, together with the field blow count, are used as input parameters for the Energy Approach.

Two large data sets were gathered at the University of Massachusetts at Lowell. One, PD/LT, contains 208 dynamic measurement cases on 120 piles monitored during driving, followed by a static load test to failure. The data were obtained from various sources and reflect variable combinations of soil-pile-driving systems. The other, PD, contains data on 403 piles monitored during driving and was provided by Pile Dynamics, Inc. of Cleveland, Ohio. All cases were examined and analyzed.

The results of the presented study invalidate the concept of a unique recommended correlation between the viscous damping parameters and soil type in both wave-based analyses. It is shown that energy losses should be attributed more to soil inertia rather than soil damping. As such, energy losses are mostly pile-shape-dependent in addition to the soil type and driving resistance influences.

The Energy Approach method was found to provide excellent evaluations of pile capacity. Therefore, the method is proposed to be used in the field for instantaneous capacity determination. The predictions of this method were found, on the average, to provide more accurate evaluations than the sophisticated office methods, especially for records obtained at the end of initial driving. The Energy Approach is, therefore, also proposed to be used as an independent tool to evaluate the office methods.

Through evaluation of the current dynamic analyses, pointing out their sources of deficiencies and offering an alternative method, this study contributed to the increase in safety and decrease in cost of driven-pile foundation systems.
-SI is the symbol for the Intemational System of Units. Appropriate
rounding should be made to comply with Section 4 of ASTM E380.

TABLE OF CONTENTS
1-INTRODUCTION 1
1.1 OVERVIEW. 1
1.2 THE PRESENT RESEARCH STUDY. 2
1.3 CONTRIBUTIONS 3
1.4 MANUSCRIPT LAYOUT. 3
2 - BACKGROUND 7
2.1 GENERAL 7
2.2 STATIC ANALYSIS. 7
2.3 STATIC LOAD TESTS 8
3 - DYNAMIC ANALYSIS OF PILES 9
3.1 GENERAL 9
3.2 DYNAMIC EQUATIONS 9
3.2.1 Review. 9
322 The Basic Principle. 10
32.3 Energy Transfer. 10
3.3 THE WAVE EQUATION. 12
3.3.1 Formulation and Principles 12
3.3.2 Pre-Driving Analysis. 16
3.3.3 Post-Driving Analysis - CAPWAP/TEPWAP 16
3.3.4 Wave Equation Analysis - Discussion 16
3.4 FIELD ANALYSIS AND THE PILE-DRIVING ANALYZER 19
3.5 THE CASE METHOD 19
3.5.1 General 19
3.5.2 The Case Method Equation 19
3.5.3 Case Damping Coefficient. 20
3.5.4 Case Method Variations. 23
(a) The Damping Factor Method, RSP 23
(b) The Maximum Resistance Method, RMX 23
(c) The Minimum Resistance Method, RMN. 24
(d) The Unloading Method, RSU 24
(e) The Automatic Method, RAU 24
3.5.5 Evaluation 25
(a) Critical Discussion 25
(b) Review of Existing Experience 25
3.5.6 Capacity Predictions 28
3.5.7 Summary 29
4. THE ENERGY APPROACH 31
4.1 BACKGROUND 31
4.2 UNDERLYING CONCEPT 32
4.3 THE ENERGY EQUATION. 32
4.4 ENERGY LOSSES AND SOIL INERTIA 34
4.4.1 General Considerations 34
4.4.2 Soil Displacement 34
4.4.3 Soil Acceleration 36
4.4.4 Expected Performance 37
5 - DATA BASE BUILDUP. 39
5.1 GENERAL 39
5.2 DATA SET PD/LT 39
5.2.1 Static Load Test Analysis 39
(a) Davisson's Criteria. 41
(b) The Shape-of-Curve Method 41
(c) The Limited Total Settlement Methods 43
(d) DeBeer's log-log Method 43
(e) The Representive Static Capacity. 43
5.2.2 Dynamic Measurements Analysis 43
(a) GROUP 1 - Complete CAPWAP Analyses 45
(b) GROUP 2 - Incomplete CAPWAP Analyses 47
(c) GROUP 3. TEPWAP Analyses 50
5.3 DATA SET PD 55
6 - DATA SET PD/LT. 57
6.1 GENERAL 57
6.2 SITE AND PILE INFORMATION . TABLE 20 57
(a) Columns 1.4 57
(b) Columns 5-8 57
(b) Columns 9 and 10 58
6.3 PILE DRIVING AND DYNAMIC MEASLREMENTS - TABLE 21 58
(a) Columns 1 and 2 58
(b) Columns 3-5 58
(c) Column 6 59
(d) Columns 7-10 59
6.4 PARAMETERS OF DYNAMIC ANALYSES - TABLE 22 60
(a) Columns 1 and 2 60
(b) Column 3 60
(c) Columns 4 and 5 60
(d) Columns $6-9$ 60
6.5 PILE CAPACITY: STATIC LOAD TEST AND DYNAMIC ANALYSES - TABLE 23 60
(a) Columns 1-3 60
(b) Columns 4.8 61
(c) Column 9 61
(d) Columns 10-12 61
7 - DATA SET PD 63
7.1 PILE/SOIL AND DYNAMIC MEASUREMENTS OF DATA SET PD . TABLE 24 63
(a) Columns 1 and 2 63
(b) Columns 3 and 4 63
(c) Columns 5-9 63
(d) Columns 10-14 63
(e) Columns 15 and 16 63
7.2 SIDE/TIP QUAKE AND DAMPING PARAMETERS OF DATA SET PD - TABLE 25 64
(a) Columns 6 and 7 64
(b) Columns 8 and 9 64
8 - ANALYSIS OF DATA SET PD/LT 65
8.1 OVERVIEW. 65
8.1.1 Purpose 65
8.1.2 Outline. 65
(a) Damping Parameters-Soil Type Correlations 65
(b) Prediction Methods-Load Test Capacity 65
(c) Office Method/Field Method Predictions 66
8.2 DAMPING PARAMETERS AND SOIL TYPE GRAPHICAL CORRELATIONS 66
8.2.1 Case Method Damping. 66
8.2.2 Smith Damping. 67
8.3 DYNAMIC PREDICTIONS-STATIC CAPACITY GRAPHICAL CORRELATIONS 67
8.3.1 Correlations Breakdown 67
8.3.2 Pile Type Correlations 69
(a) All Piles 69
(b) Large Displacement Piles 73
(c) Small Displacement Piles 74
(d) Intermediate Conclusions 75
8.3.3 Pile-Soil Type Correlations. 76
(a) Sand and Silt 76
(b) Clay and Till. 76
(c) Rock 77
(d) Intermediate Conclusions 77
8.3.4 Correlations of Pile and Soil Type for Different Driving Time 78
(a) All Piles - EOD 79
(b) All Piles - BOR 80
(c) Large Displacement Piles - EOD 80
(d) Large Displacement Piles - BOR. 81
(e) Small Displacement Piles - EOD 81
(f) Small Displacement Piles - BOR 82
(g) Intermediate Conclusions. 82
8.4 STATISTICAL ANALYSIS OF DATA SET PD/LT 83
8.4.1 Linear-Regression Analysis 84
8.42 Actual Distributions of the K Coefficients and their Probabilistic Models 85
8.4.3 Mean and Standard Deviation Analysis 87
8.5 INTERPRETATION OF THE CONTROLLING PARAMETERS 88
8.5.1 Overview. 88
8.5.2 Dynamic Predictions - Pile Area Ratio Graphical Correlations. 88
8.5.3 Dynamic Predictions - Driving Resistance Graphical Correlations 88
8.5.4 Dynamic Predictions - Driving Resistance and Time of Driving Graphical Correlations 92
(a) All Piles at EOD 92
(b) All Piles at BOR 93
8.5.5 Dynamic Predictions - Driving Resistance and Pile-Type Graphical Correlations 93
(a) Small Displacement Piles. 93
(b) Large Displacement Piles 94
8.5.6 The Effect of the Combined Major Controlling Parameters on the Accuracy of the Dynamic Predictions. 95
(a) Breakdown of Combinations 95
(b) Combinations of Pile Type and Driving Resistance 95
(c) Combinations of Pile Type, Driving Resistance, and Time of Driving. 97
9- ANALYSIS OF DATA SET PD 181
9.1 INTRODUCTION 181
9.1 .1 Purpose. 181
9.12 Overview. 181
(a) Damping Parameters - Soil-Type Correlations 181
(b) Office Method - Field Method Predictions 181
9.2 SMITH DAMPING PARAMETERS AND SOIL-TYPE CORRELATIONS 181
9.3 CAPWAP AND THE ENERGY APPROACH CORRELATIONS 182
9.3.1 All Piles - All Soils 182
9.3.2 Large Displacement Piles. 182
(a) All Cases. 182
(b) Sand and Silt 182
(c) Clay and Till. 183
(d) Rock 183
(e) Unknown Soil Type 183
(f) Intermediate Conclusions 183
9.3.3 Small Displacement Piles. 183
(a) All Cases 183
(b) Sand and Silt 184
(c) Clay and Till 184
(d) Rock 184
(e) Intermediate Conclusions 184
9.3.4 Miscellaneous Piles 184
(a) All Cases 185
(b) Sand and Silt. 185
(c) Clay and Till 185
(d) Rock 185
(e) Unknown Soil Type 185
9.4 STATISTICAL ANALYSIS OF DATA SET PD 185
9.4.1 Linear Regression Analysis. 187
9.4.2 Mean and Standard Deviation Analysis. 187
9.5 SUMMARY AND CONCLUSIONS 187
10 - SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 209
10.1 SUMMARY. 209
10.2 CONCLUSIONS 211
10.3 RECOMMENDATIONS 215
10.3.1 General. 215
10.3.2 The Performance of the Office Methods (CAPWAP/TEPWAP) 216
10.3.3 The Performance of the Energy Approach. 216
10.3.4 The Correlation Between the Office Methods and the Energy Approach 217
10.3.5 Factors of Safety and Risk Analysis 217
(a) General 217
(b) Absolute Safety Based on Data Set PD/LT. 218
(c) Factor of Safety and the Associated Risk Based on the Actual Data 223
(d) Factor of Safety and the Associated Risk Based on the Probability Distribution Function 224
10.3.6 Recommendations for Implementation 225
APPENDIX A - DATA SET PD/LT. 235
APPENDIX B - DATA SET PD 263
REFERENCES 285

LIST OF FIGURES

FIGURE PAGE
1 Resistance vs. displacement at the top of the pile. 11
2 Smith's model simulating the hammer-pile-soil system for use with the one-dimensional wave equation (Smith, 1960) 14
3 Soil-pile model (left) and the corresponding elasto-plastic soil resistance-displacement relationship (after Smith, 1960). 15
4 Notations used for model of pile and soil in TEPWAP analysis (Paikowsky, 1982). 17
5 Flow chart describing the analysis process using TEPWAP (Paikowsky, 1982). 18
6 Force and velocity traces showing two impact peaks indicative of driving in soils capable of large deformations. 21
7 Case damping ($\mathbf{J}_{\mathbf{c}}$) values for capacity prediction of offshore piles in the range of ± 20 percent from load test results (after Paikowsky, 1982), 27
8 The proposed way of obtaining the combined quake, Q (soil and pile). 35
9 Load-settlement curve of pile-case 95 with the elastic compression line inclined at 20 degrees. 40
10 Load-settlement curve of pile-case 95 with a scale that does not consider the elastic compression of the pile (following Vesic, 1977). 40
11 Load-settlement curve for pile-case 50 with the elastic compression line inclined at approximately 20 degrees. 42
12 Load-settlement data plotted on a logarithmic graph for pile-case 50 to determine the failure load according to DeBeer's method 44
13 Force and velocity ($\mathrm{V}^{*} \mathrm{EA} / \mathrm{C}$) traces of pile-case 1, a steel HP12x74 that needed a force correction (not to scale). 46
14 Digitized force and velocity multiplied by the impedance (EA/C) traces for pile-case 192 used for input into INTEGRATE 48
15 INTEGRATE output of pile-case 192 showing the back-calculated Case J_{c} value and the Energy Approach prediction. 49
16 Example of the pile identification information of pile-case 191 used as input for the TEPWAP analysis 51
17 Example of the soil and pile properties used along the pile elements of pile-case 191 as input for the TEPWAP analysis 52
18 Measured force and velocity multiplied by the impedance (EA/C) traces of pile-case 191 used by the TEPWAP analysis 53
19 Comparison between measured force near the top of pile-case 191 and the calculated force from TEPWAP analysis. 53
20 Summary of the final results from TEPWAP analysis performed on pile-case 191 54
21 Tip soil conditions vs. calculated case damping coefficient (J_{c}) based on static load test results for 208 PD/LT pile-cases. 99
22 Side soil conditions vs. Smith side damping coefficient based on CAPWAP/TEPWAP results. 100
23 Tip soil conditions vs. Smith tip damping coefficient based on CAPWAP/TEPWAP results 101
24 Static load test results vs. CAPWAP or TEPWAP predictions for 204 PD/LT pile-cases in all type of soil (AAA) 102
25 Static load test results vs. Energy Approach predictions for 202 PD/LT pile-cases in all types of soil (AAA). 103
26 CAPWAP or TEPWAP predictions vs. Energy Approach predictions for 201 PD/LT pile-cases in all types of soil (AAA) 104
$27 \mathrm{~K}_{\text {sw }}$ vs. CAPWAP/TEPWAP predictions for 206 PD/LT pile-cases in all types of soil (AAA) 105
$28 \mathrm{~K}_{\text {sp }}$ vs. Energy Approach predictions for 208 PD/LT pile-cases in all types of soil (AAA) 106
29 Static load test results vs. CAPWAP or TEPWAP predictions for 162 large displacement PD/LT pile-cases in all types of soil (LAA) 107
30 Static load test results vs. Energy Approach predictions for 163 large displacement PD/LT pile-cases in all types of soil (LAA) 108
31 CAPWAP or TEPWAP predictions vs. Energy Approach predictions for 161 large displacement PD/LT pile-cases in all types of soil (LAA) 109
32 Static load test results vs. CAPWAP or TEPWAP predictions for42 small displacement PD/LT pile-cases in all types of soil (SAA).110
33 Static load test results vs. Energy Approach predictions for 40 small displacement PD/LT pile-cases in all types of soil (SAA) 111
34 CAPWAP or TEPWAP predictions vs. Energy Approach predictions for 38 small displacement PD/LT pile-cases in all types of soil (SAA) 112
35 Static load test results vs. CAPWAP or TEPWAP predictions for 139 PD/LT pile-cases in sand and silt (AAS) 113
36 Static load test results vs. Energy Approach predictions for 136 PD/LT pile-cases in sand and silt (AAS) 114
37 CAPWAP or TEPWAP predictions vs. Energy Approach predictions for 136 PD/LT pile-cases in sand and silt (AAS) 115
38 Static load test results vs. CAPWAP or TEPWAP predictions for 51 PD/LT pile-cases in clay and till (AAC) 116
39 Static load test results vs. Energy Approach predictions for $53 \mathrm{PD} / \mathrm{LT}$ pile-cases in clay and till (AAC) 117
40 CAPWAP or TEPWAP predictions vs. Energy Approach predictions for 51 PD/LT pile-cases in clay and till (AAC) 118
41 Static load test results vs. CAPWAP or TEPWAP predictions for 14 PD/LT pile-cases in rock (AAR) 119
42
Static load test results vs. Energy Approach predictions for $14 \mathrm{PD} / \mathrm{LT}$ pile-cases in rock (AAR). 120
43 CAPWAP or TEPWAP predictions vs. Energy Approach predictions for 14 PD/LT pile-cases in rock (AAR). 121
44 Static load test results vs. CAPWAP or TEPWAP predictions for 96 PD/LT pile-cases in all types of soil at EOD (AEA) 122
45 Static load test results vs. Energy Approach predictions for 94 PD/LT pile-cases in all types of soil at EOD (AEA) 123
$46 \mathrm{~K}_{\mathrm{sw}}$ vs. CAPWAP/TEPWAP predictions for 97 PD/LT pile-cases at EOD in all types of soil (AEA) 124
$47 \quad \mathrm{~K}_{\mathrm{tp}}$ vs. Energy Approach predictions for 98 PD/LT pile-cases at EOD in all types of soil (AEA). 125
48
CAPWAP or TEPWAP predictions vs. Energy Approach predictions for 94 PD/LT pile-cases in all types of soil at EOD (AEA) 126
49 Static load test results vs. CAPWAP or TEPWAP predictions for 108 PD/LT pile-cases in all types of soil at BOR (ABA). 127
50 Static load test results vs. Energy Approach predictions for $108 \mathrm{PD} / \mathrm{LT}$ pile-cases in all types of soil at BOR (ABA) 128
51 CAPWAP or TEPWAP predictions vs. Energy Approach predictions for 108 PD/LT pile-cases in all types of soil at BOR (ABA). 129
52 Static load test results vs. CAPWAP or TEPWAP predictions for 68 large displacement PD/LT pile-cases in all types of soil at EOD (LEA) 130
53
Static load test results vs. Energy Approach predictions for 69 large displacement PD/LT pile-cases in all types of soil at EOD (LEA) 131
54 CAPWAP or TEPWAP predictions vs. Energy Approach predictions for 68 large displacement PD/LT pile-cases in all types of soil at EOD (LEA). 132
55
Static load test results vs. CAPWAP or TEPWAP predictions for 94 large displacement PD/LT pile-cases in all types of soil at BOR (LBA) 133
Static load test results vs. Energy Approach predictions for 94 large displacement PD/LT pile-cases in all types of soil at BOR (LBA) 134
57 CAPWAP or TEPWAP predictions vs. Energy Approach predictions for 93 large displacement PD/LT pile-cases in all types of soil at BOR (LBA). 135
58 Static load test results vs. CAPWAP or TEPWAP predictions for 22 small displacement PD/LT pile-cases in all types of soil at EOD (SEA)... 136
59 Static load test results vs. Energy Approach predictions for 20 small displacement PD/LT pile-cases in all types of soil at EOD (SEA) 137
60 CAPWAP or TEPWAP predictions vs. Energy Approach predictions for 20 small displacement PD/LT pile-cases in all types of soil at EOD (SEA) 138
61 Static load test results vs. CAPWAP or TEPWAP predictions for 12 small displacement PD/LT pile-cases in all types of soil at BOR (SBA) 139
62 Static load test results vs. Energy Approach predictions for 12 small displacement PD/LT pile-cases in all types of soil at BOR (SBA) 140
63 CAPWAP or TEPWAP predictions vs. Energy Approach predictions for 12 small displacement PD/LT pile-cases in all types of soil at BOR (SBA) 141
64 Histogram and frequency distribution of $\mathrm{K}_{\text {sw }}$ for 206 PD/LT pile-cases in all types of soil (AAA) 142
65 Cumulative frequency distribution of K_{sw} for 206 PD/LT pile-cases in all types of soil (AAA). 143
66 Histogram and frequency distribution of K_{sp} for 208 PD/LT pile-cases in all types of soil (AAA). 144
67 Cumulative frequency distribution of K_{sp} for 208 PD/LT pile-cases in all types of soil (AAA) 145
68 Histogram and frequency distribution of K_{cw} for 206 PD/LT pile-cases in all types of soil (AAA). 146
$69 \mathrm{~K}_{\text {sw }}$ vs. the pile area ratio (A_{R}) for 201 PD/LT pile-cases in all types of soil 147
70 $\mathrm{K}_{\text {tow }}$ vs. the pile area ratio (A_{R}) for $201 \mathrm{PD} / \mathrm{LT}$ pile-cases in all types of soil (logarithmic scale) 148
$71 \quad \mathrm{~K}_{\mathrm{tp}}$ vs. the pile area ratio (A_{R}) for 203 PD/LT pile-cases in all types of soil. 149
$72 \quad \mathrm{~K}_{\mathrm{cp}}$ vs. the pile area ratio (A_{R}) for $203 \mathrm{PD} / \mathrm{LT}$ pile-cases in all types of soil (logarithmic scale) 150
$73 \mathrm{~K}_{\text {sw }}$ vs. blow count (BPI) for 206 PD/LT pile-cases in all types of soil (AAA) 151
$74 \quad \mathrm{~K}_{\mathrm{sp}}$ vs. blow count (BPI) for 208 PD/LT pile-cases in all types of soil (AAA) 152
$75 \mathrm{~K}_{\text {ow }}$ vs. blow count (BPI) for 95 PD/LT pile-cases in all types of soil at EOD (AEA) 153
$76 \mathrm{~K}_{\text {tp }}$ vs. blow count (BPI) for $96 \mathrm{PD} / \mathrm{LT}$ pile-cases in all types of soil at EOD (AEA). 154
$77 \mathrm{~K}_{\text {sw }}$ vs. blow count (BPI) for 109 PD/LT pile-cases in all types of soil at BOR (ABA). 155
$78 \mathrm{~K}_{\text {tp }}$ vs. blow count (BPI) for $110 \mathrm{PD} / \mathrm{LT}$ pile-cases in all types of soil at BOR (ABA) 156
$79 \quad \mathrm{~K}_{\mathrm{sw}}$ vs. blow count (BPI) for 57 PD/LT pile-cases with pile area ratios >350 in all types of soil. 157
$80 \mathrm{~K}_{\mathrm{sp}}$ vs. blow count (BPI) for 57 PD/LT pile-cases with pile area ratios >350 in all types of soil. 158
$81 \quad \mathrm{~K}_{\mathrm{xw}}$ vs. blow count (BPI) for 144 PD/LT pile-cases with pile area ratios < 350 in all types of soil. 159
$82 \mathrm{~K}_{\mathrm{sp}}$ vs. blow count (BPI) for $146 \mathrm{PD} / \mathrm{LT}$ pile-cases with pile area ratios < 350 in all types of soil 160
$83 \mathrm{~K}_{\text {sw }}$ vs. blow count (BPI) for 16 PD/LT pile-cases with pile area ratios >350 and blow counts $<6 \mathrm{BPI}$ (0.24 blows/mm) in all types of soil. 161
$84 \mathrm{~K}_{\text {rp }}$ vs. blow count (BPI) for 16 PD/LT pile-cases with pile area ratios >350 and blow counts <6 BPI (0.24 blows/mm) in all types of soil 162
$85 \mathrm{~K}_{\mathrm{cw}}$ vs. blow count (BPI) for 41 PD/LT pile-cases with pile area ratios >350 and blow counts $>6 \mathrm{BPI}$ (0.24 blows/mm) in all types of soil. 163
$86 \mathrm{~K}_{\text {dp }}$ vs. blow count (BPI) for 41 PD/LT pile-cases with pile area ratios >350 and blow counts >6 BPI (0.24 blows/mm) in all types of soil 164
$87 \mathrm{~K}_{\text {dw }}$ vs. blow count (BPI) for 64 PD/LT pile-cases with pile area ratios < 350 and blow counts <6 BPI (0.24 blows/mm) in all types of soil. 165
$88 \quad \mathrm{~K}_{\mathrm{sp}}$ vs. blow count (BPI) for 64 PD/LT pile-cases with pile area ratios < 350 and blow counts <6 BPI (0.24 blows/mm) in all types of soil 166
$89 \quad \mathrm{~K}_{\text {tw }}$ vs. blow count (BPI) for $80 \mathrm{PD} / \mathrm{LT}$ pile-cases with pile area ratios < 350 and blow counts >6 BPI (0.24 blows/mm) in all types of soil 167
$90 \quad \mathrm{~K}_{\text {rp }}$ vs. blow count (BPI) for $82 \mathrm{PD} / \mathrm{LT}$ pile-cases with pile area ratios <350 and blow counts $>6 \mathrm{BPI}(0.24$ blows $/ \mathrm{mm}$) in all types of soil. 168
$91 \mathrm{~K}_{\mathrm{sw}}$ vs. blow count (BPI) for $12 \mathrm{PD} / \mathrm{LT}$ pile-cases at EOD with pile area ratios >350 and blow counts $<6 \mathrm{BPI}$ (0.24 blows/mm). 169
$92 \mathrm{~K}_{\mathrm{sp}}$ vs. blow count (BPI) for 12 PD/LT pile-cases at EOD with pile area ratios >350 and blow counts $<6 \mathrm{BPI}$ (0.24 blows/mm) 170
$93 \quad \mathrm{~K}_{\text {sw }}$ vs. blow count (BPI) for 27 PD/LT pile-cases at EOD with pile area ratios >350 and blow counts >6 BPI (0.24 blows/mm) 171
94
$\mathrm{K}_{\text {sp }}$ vs. blow count (BPI) for 27 PD/LT pile-cases at EOD with pile area ratios >350 and blow counts >6 BPI (0.24 blows/mm). 172
95 $\mathrm{K}_{\text {bw }}$ vs. blow count (BPI) for 36 PD/LT pile-cases at EOD with pile area ratios <350 and blow counts $<6 \mathrm{BPI}(0.24$ blows/mm) 173
$96 \quad \mathrm{~K}_{\text {ap }}$ vs. blow count (BPI) for $36 \mathrm{PD} / \mathrm{LT}$ pile-cases at EOD with pile area ratios < 350 and blow counts < 6 BPI (0.24 blows/mm) 174
97
$\mathrm{K}_{\text {sw }}$ vs. blow count (BPI) for 20 PD/LT pile-cases at EOD with pile area ratios <350 and blow counts >6 BPI (0.24 blows/mm) 175
98
K_{sp} vs. blow count (BPI) for $21 \mathrm{PD} / \mathrm{LT}$ pile-cases at EOD with pile area ratios <350 and blow counts >6 BPI (0.24 blows/mm) 176
$99 \quad \mathrm{~K}_{\text {sw }}$ vs. blow count (BPI) for $18 \mathrm{PD} / \mathrm{LT}$ pile-cases at BOR with pile area ratios >350 and all blow counts 177
100 $\mathrm{K}_{\text {rp }}$ vs. blow count (BPI) for 18 PD/LT pile-cases at BOR with pile area ratios >350 and all blow counts. 178
$101 \mathrm{~K}_{\text {sw }}$ vs. blow count (BPI) for 88 PD/LT pile-cases at BOR with pile area ratios <350 and all blow counts 179
$102 \mathrm{~K}_{\mathrm{xp}}$ vs. blow count (BPI) for 89 PD/LT pile-cases at BOR with pile area ratios <350 and all blow counts 180
103 Side soil conditions vs. Smith side damping based on CAPWAP results for 372 PD pile-cases 191
104 Tip soil conditions vs. Smith tip damping based on CAPWAP results for 377 PD pile-cases 192
105 CAPWAP predictions vs. Energy Approach predictions for 398 PD pile-cases in all types of soil. 193
106 CAPWAP predictions vs. Energy Approach predictions for 238 large displacement PD pile-cases in all types of soil 194
107 CAPWAP predictions vs. Energy Approach predictions for 89 large displacement PD pile-cases in sand and silt. 195
108 CAPWAP predictions vs. Energy Approach predictions for 50 large displacement PD pile-cases in clay and till 196
109 CAPWAP predictions vs. Energy Approach predictions for 76 large displacement PD pile-cases in rock. 197
110 CAPWAP predictions vs. Energy Approach predictions for 22 large displacement PD pile-cases in unknown soil types. 198
111 CAPWAP predictions vs. Energy Approach predictions for 76 small displacement PD pile-cases in all types of soil 199
112 CAPWAP predictions vs. Energy Approach predictions for 26 small displacement PD pile-cases in sand and silt. 200
113 CAPWAP predictions vs. Energy Approach predictions for 21 small displacement PD pile-cases in clay and till 201
114 CAPWAP predictions vs. Energy Approach predictions for 29 small displacement PD pile-cases in rock 202
115 CAPWAP predictions vs. Energy Approach predictions for 85 miscellaneous PD pile-cases in all types of soil. 203
116 CAPWAP predictions vs. Energy Approach predictions for 40 miscellaneous PD pile-cases in sand and silt. 204
117 CAPWAP predictions vs. Energy Approach predictions for 21 miscellaneous PD pile-cases in clay and till. 205
118 CAPWAP predictions vs. Energy Approach predictions for 19 miscellaneous PD pile-cases in rock. 206
119 CAPWAP predictions vs. Energy Approach predictions for five miscellaneous PD pile-cases in unknown soil types 207
120 Side soil conditions vs. Smith side damping based on CAPWAP/TEPWAP results for 581 pile-cases 212
121 Tip soil conditions vs. Smith tip damping based on CAPWAP/TEPWAP results for 581 pile-cases 213
122 Risk analysis of CAPWAP/TEPWAP predictions for 206 PD/LT pile-cases in all types of soil. 228
123 Risk analysis of Energy Approach predictions for 208 PD/LT pile-cases in all types of soil 229
124 Risk analysis of CAPWAP/TEPWAP predictions for $95 \mathrm{PD} / \mathrm{LT}$ pile-cases in all types of soil at EOD 230
125 Risk analysis of Energy Approach predictions for 96 PD/LT pile-cases in all types of soil at EOD 231
126 Risk analysis of CAPWAP/TEPWAP predictions for 39 small displacement ($A_{R}>350$) PD/LT pile-cases in all types of soil at EOD 232
127 Risk analysis of Energy Approach predictions for 39 small displacement ($A_{R}>350$) PD/LT pile-cases in all types of soil at EOD. 233

LIST OF TABLES

TABLE
1 Data set PD/LT contributors 5
2 Recommended J_{c} values according to the soil type at the pile tip 22
3 Subgrouping of the piles in data set PD (indicating the number of piles in each group) 56
4 Breakdown of all PD/LT categories. 68
5 Linear-regression analysis of $\mathrm{K}_{\text {Jw }}$ for selected PD/LT pile-cases. 70
6 Linear-regression analysis of K_{sp} for selected PD/LT pile-cases 71
7 Linear-regression analysis of $K_{\text {ew }}$ for selected PD/LT pile-cases 72
8 Statistical analysis of K coefficients for all PD/LT pile-cases. 89
9 Statistical analysis of the area ratio, resistance, and time of driving combination 96
10 Linear-regression analysis of K_{ew} for PD pile-cases 186
11 Statistical analysis of K_{ew} for PD pile-cases 188
12 Linear regression summary of selected PD/LT and PD subgroups. 189
13 Statistical analysis summary of selected PD/LT and PD subgroups. 190
14 Linear regression and statistical analysis of Ksw for selected PD/LT pile-cases. 219
15 Linear regression and statistical analysis of Ksp for selected PD/LT pile-cases. 220
16 Linear regression and statistical analysis of Kew for selected PD/LT and PD pile-cases. 221
17 Linear regression and statistical analysis of Kew for selected PD/LT pile-cases. 222
18
Absolute factor of safety based on data set PD/LT 223
19 Factor of safety and associated risk. 227
20 Site and pile information for PD/LT. 235
21 Pile driving and dynamic measurements for PD/LT. 242
22Pile capacity based on static load test and dynamic analysisfor PD/LT.256
Pile/soil and dynamic measurements of data set PD. 263
25 Side/tip quake and damping parameters of data set PD 275

CHAPTER 1 - INTRODUCTION

1.1 OVERVIEW

The study of driven-pile foundations and their behavior under dynamic and static loads dates back to the late $19^{\text {th }}$ century. Until that time, the design of driven piles was mainly based on experience. Dynamic equations were the first attempt at a theoretical assessment of the static capacity of driven piles. The "general" dynamic equation was developed based on the assumption that the pile and the hammer are two rigid bodies and that the calculated resistance is equal to the static capacity of the pile (Poulos and Davis, 1980).

The dynamic analyses are attractive as they attempt to predict the static capacity based on the pile behavior during driving. As such, they utilize data that is readily available during the construction operation. Moreover, they enable "real-time" capacity assessment during installation.

Hence, recent centuries have seen an increasing demand on the foundation engineer to further improve the dynamic methods of analysis. As a result, more research was performed in this area and it was realized that pile driving was not accurately represented by rigid-body mechanics (Newtonian impact), (Cummings, 1940). This realization led to the development of analyses based on wave theory utilizing the onedimensional wave equation (Smith, 1960).

Stress-wave analyses consider the fact that each hammer blow produces an elastic stress wave that moves down the length of the pile at the speed of sound. This indicates that the entire pile is not stressed simultaneously (rigid-body mechanics), which is one of the basic assumptions of the dynamic equations.

A major improvement was gained with the direct measurement of the pile response under each hammer blow. Early large-scale studies (e.g., Michigan State Highway Commission, 1965; Texas Highway Department, 1973; and Ohio Department of Transportation, 1975) led to the development of an effective and reliable commercial system (Goble et al., 1970, 1975). This system, known as the PDA (Pile-Driving Analyzer), enables complete and relatively easy acquisition of dynamic measurements and their analysis during driving. Similar systems were later developed outside the United States (FPDS-3-TNO, 1993; Reiding et al., 1988; and Iwanowski, 1987).

The obtained dynamic measurements are used in two ways. One is a field analysis known as the Case Method (Goble et al., 1970 and Rausche et al., 1975). This analysis is based on a simplified solution of the wave equation and provides a "real-time" capacity
assessment during driving. The other is an office analysis that is based on the wave equation solution utilizing the force and velocity signals at the point of measurement. Several existing codes are based on this principle, for example, CAse Pile Wave Analysis Program, CAPWAP, (Goble et al, 1970); TEchnion Pile Wave Analysis Program, TEPWAP, (Paikowsky, 1982 and Paikowsky and Whitman, 1989); and TNO (Middendorp and van Weel, 1986).

These analyses enable evaluation of a variety of parameters in addition to the static capacity. These evaluations include extreme stresses, pile-damage assessment, and loadsettlement relations to name a few. These advantages are offset, however, by the time required to produce the results and the cost incurred during this time.

A large-scale assessment (100 or more piles) of the analyses utilizing dynamic measurements has not been carried out since their initiation. Limited studies suggest substantial limitations to the Case Method (e.g., Trow Report, 1978; Paikowsky, 1982; and Thompson and Goble, 1988). Mixed experiences were reported for the office methods. These reports ranged from excellent predictions for very large offshore openpipe piles in sand (Paikowsky, 1982) to poor performance of concrete piles in clay and till (Trow Report, 1978).

Based on the existing experiences, it was clearly evident that in order to improve the state of the art it is necessary: (1) to develop an alternative method for capacity evaluation in the field and (2) to assess the performance of the different dynamic analyses and their underlying assumptions based on accumulating a large data set. Both needs are addressed by the present research.

1.2 THE PRESENT RESEARCH STUDY

The present research study is based on the aforementioned needs and consists of three major parts. The first part (chapter 4) presents an alternative field method known as the Energy Approach. This method combines the basic principle of the energy balance together with data provided through dynamic measurements. The method was first proposed by Paikowsky (1982) based on experience gained during the construction of a large offshore facility. The method was further examined on a limited scale in the Boston area (Paikowsky, 1984, 1990). Preliminary evaluations were carried out by McDonnell (1991) and Paikowsky and Chernauskas (1992).

The second part (chapters 5, 6, and 7) presents the buildup of two large-scale data sets. One data set, PD/LT (Pile Dynamic/Load Test), comprises 208 dynamic measurements on 120 piles monitored during driving, followed by a static load test to failure. All the cases were monitored using the PDA (Pile-Driving Analyzer) and the various data sources are outlined in the following section. The second data set, PD (Pile Dynamic),
contains data on 403 piles monitored during driving. This data set was provided exclusively by Pile Dynamics, Inc. of Cleveland, Ohio and was originally presented by McDonnell (1991).

The third part (chapters 8, 9, and 10) presents the analysis and interpretation of the data sets. The field and office methods are examined and analyzed. Possible mechanisms underlying the different methods are suggested and the obtained results are evaluated in light of these proposed mechanisms.

1.3 CONTRIBUTIONS

Advances in geotechnical engineering in general, and foundation engineering in particular, may take place only through ultimate full-scale evaluations. Full-scale observations are difficult to obtain and require collaboration and understanding between the owner (the "client"), the designer, the contractor, and the researcher. In the presented case, such understanding could have taken place through: (1) the vision of the Federal Highway Administration, which realized the need to support and carry out research; (2) the cooperative and research-oriented nature of GRL, Inc. and Pile Dynamics, Inc. of Cleveland, Ohio; and (3) the many contributors outlined below that realized the advantage of sharing their information for the benefit of all. Table 1 outlines the contributors to data set PD/LT. As previously noted, data set PD was provided exclusively by Pile Dynamics, Inc. of Cleveland, Ohio.

As these data sets have been and will continue to be useful to several research areas, the researchers at the University of Massachusetts at Lowell thank all of the contributors for their cooperation in providing their data.

1.4 MANUSCRIPT LAYOUT

The following are short descriptions for each of the following chapters:
Chapter 2 - Provides a brief background of static analyses and static load tests.
Chapter 3 - Details the various dynamic analyses currently employed, including dynamic equations, the Case Method, and CAPWAP/TEPWAP.

Chapter 4 - Develops the proposed Energy Approach.
Chapter 5 - Outlines the buildup and analysis of data sets PD/LT and PD.

Chapter 6 - Outlines the tables presented in appendix A containing data set PD/LT.

Chapter 7 - Outlines the tables presented in appendix B containing data set PD.
Chapter 8 - Discusses and presents the graphical and statistical results obtained from analyzing data set PD/LT.

Chapter 9 - Discusses and presents the graphical and statistical results obtained from analyzing data set PD.

Chapter 10 - Provides summary, conclusions, and recommendations.
Appendix A - Presents data set PD/LT, including pile geometry, subsurface conditions, dynamic measurements, dynamic parameters, static load test results, CAPWAP/TEPWAP capacity predictions, and the Energy Approach predictions.

Appendix B - Presents data set PD, including pile geometry, skin and toe soil, dynamic measurements, and CAPWAP and Energy Approach predictions.

Table 1. Data set PD/LT contributors.

Organization	Persons in charge and/or contact people	Number of cases	Reference
U.S. Federal Highway Administration	Richard Cheney, Jerry DiMaggic, Albert Dimillio, Chris Dumas. and Carl Ealy	126	FHWA Dynaric Monilating and Pile-Load Test Resons-Proiect 56 : Colorsao (1987), owa (1986). Kenlucky (1993). Loulsiana i i990). Mane (' 1990). Mirnescia (1991) Missoun (1989), Nocrakika (1989), Okianoma !1969). Oregon \|r997. Penngylvaria ('9991), Vermont (1991). Wasningron i: 1984).
Pile Dynamics, Inc. and GRL, Ine.	George Goble, Garland Likins, Frank Rausche, and Mark Svinkin	47	abe, Llikins, and Morganc : 19990 . Inhouse Repors.
Ontario Ministry of Transportation	Betty Bennet, Murty Devata, John Pertruzziello, and Mark Vasavithisaan	14	Ple-Load Capactry Evaluation nWY 404 Structures. Ste 33 (1978), Foundalion Evaluation and Degign Resor-Site 35 Ontano MOT (1983), Thompson and Devata \{1980).
The Trow Group Limited	Shaheen Ahmad, Steven Cheng, Tony Maini, and David Thompson	35	The Trow Fopon (1978). Cheng and Ahmed (1888), Thomsson and Devata (1980), Inhouse Reports. Foundation Evaluation and Design Feport-Site 35 Ontaric MOT (1983),
GZA GeoEnvironmental	William Beloff and Steve Roy	15	Inhouse Reports
Gannet and Flemming	James Langer and John Masland	10	Inhouse Reports
Law Engineering	Kevin Kett	6	Inhouse Reports
STS Consultants	Patrick Hannigan	4	Inhouse Reports
Wagstaff Piling	David Klingberg and Julian Siedel	4	Inhouse Reports
Haley and Aldrich Inc.	Christopher Snow, David Thompson, and James Weaver	6	Inhouse Reports
Florida DOT	William 'Bubba' Knıght	59	Inhouse Reports
Oklahoma DOT	Steve Jacobi	7	Inhouse Repors
Washington DOT	Ralph Henning	4	Inhouse Reports
lowa DOT	Curtis Monk	4	Inhouse Reports
Oregon DOT	Glen Thommen	2	Inhouse Reports
Louisiana DOT	Mark Morvant	3	Inhouse Repors
Anna GeoDynamics, Inc.	Bengt Fellenius	2	Edce and Fallenius (1990)

Note: The total number does not add up to 208 pile cases as different sources may have contributed information for the same pile case.
.

CHAPTER $2 \cdot$ BACKGROUND

2.1 GENERAL

The use of driven piles for foundation support for a variety of structures, such as bridges, buildings, towers, and dams, is a practice that dates back to prehistoric times. ${ }^{1}$ Piles are used to transfer superstructure loads through soft soil layers and/or water. Pile resistance is developed through the soil, as in the case of friction piles, or from competent underlying soil or rock strata, as in the case of end-bearing piles. Most piles incorporate a combination of both frictional resistance and end-bearing resistance.

In this chapter, the main difficulty with using piles as foundation systems is addressed. Engineers have limited ability to predict the capacity and integrity of driven piles. As a result, high factors of safety are used when designing deep foundations, which add significant costs to projects. Pile capacity may be estimated using static or dynamic analyses and may be confirmed by static load tests. The following includes a brief discussion of static analyses and static load tests. The alternative methods, namely dynamic analyses, are outlined in chapter 3.

2.2 STATIC ANALYSIS

The initial design of pile foundations requires the evaluation of pile capacity via static analysis. The Federal Highway Administration (FHWA) incorporates static formulas (Tomlinson and Nordlund methods) for the analysis of driven piles in their pile analysis program, SPILE (DiMaggio, 1991). Static formulas estimate driven-pile capacities on the basis of soil-strength parameters obtained from subsurface exploration programs and from pile-soil interaction relations. The predictions are simply a summation of the estimated point and skin resistance of the pile. For a description of various methods, see, for example, Bowles, 1988. There is, however, a great deal of uncertainty in these analyses and their accuracy is highly questionable.

Briaud et al. (1988) examined the capacity predictions from 12 static analyses applied to 100 piles that were statically load tested to failure. They concluded that all methods produced unsatisfactory results, especially in layered soil strata. Similar conclusions were drawn when the best methods were averaged and used to predict the capacity of piles

[^0]driven in varying soil layers.
Unfortunately, the inaccuracy of static analysis results in the use of very high safety factors leading to higher construction costs.

2.3 STATIC LOAD TESTS

Static load testing is the only method available to determine the actual static capacity of piles. This method involves physically loading a pile at specified time intervals (see, for example, ASTM D-1143) and monitoring the settlement of the pile top until failure. The results of these tests are then plotted (load vs. settlement) and the failure load is interpreted using various methods (outlined in chapter 5). These tests are expensive, time-consuming, and, as a result, are not commonly performed.

Static testing is typically carried out as a "proof test" on piles to determine the pile's performance in supporting a service load, usually twice the design load (e.g., Massachusetts Highway Dept. (1989), Virginia DOT (1987), and Alabama State Highway Dept. (1985) State highway codes). It is important to note that the proof test does not provide the ultimate pile capacity and, therefore, does not contribute to the effort of increasing accuracy and reducing foundation costs. Although the test is typically carried out to twice the design load, the actual employed factor of safety may be much higher as the actual pile capacity is unknown. Proof testing is less expensive than loading a pile to failure and is therefore more frequently performed.

In spite of the difficulties in carrying out a load test to failure and the possible inaccuracies of the data (see Fellenius, 1989), it remains as the only means to examine actual pile capacity.

Data set PD/LT, which is presented in chapter 6, contains cases of 120 piles load tested to failure. The interpretation of the test results was carried out using a variety of methods as outlined in section 5.2.1.

CHAPTER 3 - DYNAMIC AVALYSIS OF PILES

3.1 GENERAL

Dynamic analyses of piles are methods that predict pile capacity based on the behavior of the hammer-pile-soil system during driving. Such methods are based on the idea that the driving operation induces failure in the pile-soil system. In other words, pile driving is analogous to a very fast load test under each hammer blow. The pile must, however, experience a minimum permanent displacement, or set (approximately 0.1 inch [2.5 $\mathrm{mm}]$), during each hammer blow to fully mobilize the resistance of the pile-soil system. If there is very little or no permanent downward displacement of the pile tip, then the pile-soil system experiences mostly elastic deformation. As a result, capacity predictions based on measurements taken at this time would not be indicative of the full resistance of the pile-soil system.

There are basically two methods of estimating the capacity of driven piles based on dynamic driving resistance: pile-driving formulas (i.e., dynamic equations) and waveequation analysis.

3.2 DYNAMIC EQUATIONS

3.2.1 Review

For centuries (Cummings, 1940), quantitative analyses of pile capacity have been performed using dynamic equations. These equations can be categorized into three groups: theoretical equations, empirical equations, and those that consist of a combination of the two. It is important to mention that 45 of the State highway departments in the United States include a dynamic formula in their foundation specifications for the determination of bearing value for single-acting steam/air hammers. Of these 45 States, 30 use the Engineering News Record (ENR) formula and 9 States use other variations of the rational pile formula. In general, all the pile formulas, with the exception of the Gates formula, are derived from the rational pile formula (Bowles, 1988). A reference will be made here only to theoretical equations because:

- Empirical and semi-empirical equations are restricted to the conditions and assumptions of their original data set.
- State highway building codes utilize theoretical equations.

3.2.2 The Basic Principle

The theoretical equations have been formulated around analyses that evaluate the total resistance of the pile, based on the work done by the pile during penetration.
Observations of the hammer's ram stroke and the pile set are used in determining this work done by the hammer and the pile. These theoretical equation formulations assume elasto-plastic force-displacement relations (see figure 1). The total work is computed as:

$$
\begin{equation*}
W=R_{u}\left(S+\frac{Q}{2}\right) \tag{1}
\end{equation*}
$$

where $\quad \begin{array}{ll}\mathrm{R}_{\mathrm{u}}= & \text { yield resistance }\end{array} \quad \begin{aligned} & \mathrm{S}=\begin{array}{l}\text { pile set, denoting the permanent displacement (plastic } \\ \text { deformation) of the pile under each hammer blow }\end{array} \\ & \mathrm{Q}=\begin{array}{l}\text { quake, denoting the elastic deformation of the pile-soil } \\ \text { system. }\end{array}\end{aligned}$
In general, dynamic equations are inaccurate (see for example Housel, 1965, 1966; Flaate, 1964; and Olsen and Flaate, 1967) and a high factor of safety (F.S.) is therefore required when using their estimated capacity (e.g., F.S. $=6$ for the ENR equation). Dynamic equations are largely inaccurate because:

- Their parameters, such as the efficiency of energy transfer and the pile/soil quake, are crudely approximated.
- Some of the theoretical developments of the rational pile formula, especially those relating the energy transfer mechanism to a Newtonian analysis of ram-pile impact, are theoretically invalid (see, for example, Cummings, 1940 and Taylor, 1948).
- There is no differentiation between static and dynamic soil resistances where it is known that such differences exist, especially in cohesive soils (Taylor, 1948).

32.3 Energy Transfer

The theory of energy transfer analysis in many of the dynamic equations assumes that the hammer-pile impact is consistent with Sir Isaac Newton's third law, Conservation of Momentum. Newton's relationship applies to the impact of two free rigid bodies. In the case of dynamic equations, these rigid bodies are considered to be the hammer and the pile. This law of motion states that if no external forces are acting on the two rigid bodies, then the total momentum of the system is conserved. The impulsive forces acting during the impact are actually internal and, therefore, do not affect the total momentum

Figure 1. Resistance vs. displacement at the top of the pile.
of the system (see Cummings, 1940). This is clearly not the case for driven piles, which are elastic rather than rigid and experience end bearing as well as frictional resistance. Newton is reported to have stated that his expression for the impact of two massive bodies did not apply for "bodies ... which suffer some such extension as occurs under the strokes of a hammer" (see Taylor, 1948).

The ENR formula, published in 1888, was originally developed for use with timber piles and a drop hammer (Bowles, 1988). This formula further simplifies the assumptions made by the rational pile formula by equating the efficiency of the ram-pile impact to 1 . This oversimplification does not consider three factors:

- Energy losses that occur in the pile-driving system during impact.
- Work used in the elastic compression of the pile and soil.
- Varying efficiencies of the wide range of hammers used today.

These simplifications in the development and use of the ENR formula result in a
necessary safety factor of 6 (Taylor, 1948). Briaud and Tucker (1988) checked the prediction accuracy of the ENR equation in 68 pile cases. The static capacity was determined based on a reference settlement equal to one-tenth of the pile diameter plus the elastic compression of the pile. The mean of the ratio predicted over measured load was 0.82 with a standard deviation of 0.38 . Further reference to these results is made in chapter 10. Overall, the low reliability of dynamic equations requires very high factors of safety that make their use extremely uneconomical.

3.3 THE WAVE EQUATION

3.3.1 Formulation and Principles

Issacs (1931) concluded that many pile-driving formulas were incorrectly based on Newtonian mechanics for the pile/hammer impact and he became the first person to suggest the use of an analysis based on the one-dimensional wave equation instead. This proposed solution assumed that the toe of the pile was fixed and that no side resistance existed (Lowery et al.,1969). Fox (1932) proposed an exact solution to Issacs formulation; however, without the aid of computers, many simplified assumptions were necessary because of the complexity of his solution (Smith, 1960).

Stress-wave propagation in a pile during driving can be described by the following onedimensional wave equation (after Paikowsky and Whitman, 1990) modified to include frictional resistance along the pile:

$$
\begin{equation*}
E_{p} \frac{\partial^{2} u}{\partial x^{2}}-\frac{S_{p}}{A_{p}} f_{s}=\rho_{p} \frac{\partial^{2} u}{\partial t^{2}} \tag{2}
\end{equation*}
$$

where $\quad E_{p}, \rho_{p}=$ modulus of elasticity and unit density of the pile material $\mathrm{u}(\mathrm{x}, \mathrm{t})^{\mathrm{p}}=\quad$ longitudinal displacement of infinitesimal segment $\mathrm{f}_{\mathrm{s}}=\quad$ frictional stress along the pile $A_{p}, S_{p}=$ pile area and circumference, respectively.

The displacement (u) causes strains in each pile element that can be used to calculate pile stresses as well as the resistance developed in the soil. This displacement can be determined with respect to time and location. The friction stresses (f_{s}) are generated by the movement of the pile. When the pile is subjected to free-wave motion ($f_{s}=0$), the stress propagation equation becomes the familiar one-dimensional wave equation:

$$
\begin{equation*}
c^{2} \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
c=\sqrt{\frac{E_{p}}{\rho_{\rho}}} \tag{4}
\end{equation*}
$$

c	$=$
E_{p}	$=$
ρ_{p}	$=\quad$ mavespeed of the pile material
	density of the pile material.

Among the assumptions implicit in the development of the one-dimensional wave equation are prismatic shape and homogeneity. Also, it is assumed that under loading, plane parallel cross sections remain plane and parallel and that a uniform distribution of stress exists across each plane. The assumption of uniaxial stress does not include uniaxial strain and, therefore, lateral expansions and contractions (Poisson's effect) arise from the axial stresses associated with lateral inertia (Graff, 1975). The additional friction term (after Paikowsky and Whitman, 1990) was included under the assumption that the soil is stationary (having no inertia effects), and the action of the friction forces does not violate any of the previous assumptions.

The so-called "wave equation methods" are based on a numerical solution of the onedimensional wave equation. The numerical solution utilizes mathematical models for the pile and the pile-soil system. When the one-dimensional wave equation numerical solution is used for pre-driving analysis, the driving system is also modeled.

In 1960, Smith developed a numerical model to simulate the dynamic behavior of the hammer-pile-soil system during driving. This model is represented by a series of discrete masses and springs used for solving the one-dimensional wave equation (see figure 2).
The soil resistance is modeled via a spring, slider, and dashpot, which represent the static and dynamic soil resistances (see figure 3). The elasto-plastic soil model is employed for the static soil resistance in Smith's solution. The distance traveled by the pile toe during the elastic deformation of the soil is represented by the soil quake (Smith, 1960). As the elastic limit of the soil is reached (represented by the slider in sequence with the spring), plastic deformation takes place. The plastic deformation, or irreversible compression of the soil, is denoted by the permanent set of the soil (see figure 3).

According to this model, point A represents the ground resistance buildup to the ultimate resistance, R_{u}. Plastic failure occurs as the ground resistance has reached its maximum and the adjacent pile segment displaces, plastically, to point B. Unloading the soil at point B produces an elastic rebound, equal to the quake, to point C. The

Figure 2. Smith's model simulating the hammer-pile-soil system for use with the one-dimensional wave equation (Smith, 1960).

Figure 3. Soil-pile model (left) and the corresponding elastoplastic soil resistance-displacement relationship (after Smith, 1960).
permanent set is, therefore, equal to the distance $O C$, which, in turn, is equal to distance AB (Smith, 1960). The static soil resistance-displacement relationship, as presented by Smith (1960), is modeled by a spring (K_{s}) and a slider, where W represents the mass of the pile element.

The dynamic component of the soil's resistance is assumed to be viscous (soil-type related) and is, therefore, velocity-dependent. This dynamic resistance is modeled by a dashpot (J) parallel to the spring (see figure 3). The resisting soil force ($\mathrm{R}_{\max }$) developed under each hammer blow is a combination of the static and dynamic soil resistances:

$$
\begin{equation*}
R_{\operatorname{tax}}=R_{s}+R_{d} \tag{5}
\end{equation*}
$$

where $\quad R_{\text {max }}=\quad$ total resistance

$R_{s}=$	static resistance
$R_{d}=\quad$ dynamic resistance.	

The wave equation formulation is used in two general ways: pre-driving analysis and post-driving analysis.

3.3.2 Pre-Driving Analysis

The so-called "wave equation analysis" utilizes the one-dimensional wave equation to predict dynamic pile behavior before construction and models the pile-soil system and the driving system (i.e., the hammer, cushion, and capblock), as suggested by Smith (1960). This computerized solution is used for the evaluation of the penetration resistance (i.e., blow count) and the driving stresses in the modeled pile under given conditions. The static capacity is then determined by relating the computed static capacity-penetration resistance relationship for a certain energy rating to observed dynamic resistances during driving. Such analyses enable engineers to determine a suitable pile-site-equipment combination.

3.3.3 Post-Driving Analysis - CAPWAP/TEPWAP

Post-driving analyses utilize the measured force signal (calculated from strain readings) and the measured velocity signal (integrated from acceleration readings) obtained near the pile top during driving. These analyses model the pile-soil system as shown in figure 4 with the element denoted as number 3 representing the point of measurement. The velocity signal is used as a boundary condition at that point while varying the parameters describing the soil resistance in order to match the calculated and measured force signals. These parameters include the side and tip quake, side and tip damping, the pile shaft resistance, and the pile tip resistance. Additional parameters may be used to describe soil resistance and rebound ratio for unloading different from that of loading. The process is described in the form of a flow chart in figure 5. The subscripts msd. and cal. denote measured and calculated values, respectively. Iterations are performed by changing the soil-model variables for each pile element in contact with the soil until the best match between the force signals is obtained. The results of these analyses are assumed to represent the actual distribution of the ultimate static capacity of the pile.

This procedure was first suggested by Goble, Likins, and Rausche (1970), utilizing the computer program CAPWAP. Similar analyses were developed by others (see Paikowsky, 1982 and Paikowsky and Whitman, 1989) utilizing the program code TEPWAP.

3.3.4 Wave Equation Analysis - Discussion

Post-driving analyses utilize the measured force and velocity waves, hence, the energy delivered to the pile in these models is exact. The models can consider the "damping" at

Figure 4. Notations used for model of pile and soil in TEPWAP analysis (Paikowsky, 1982).

Figure 5. Flow chart describing the analysis process using TEPWAP (Paikowsky, 1982).
each depth by utilizing different damping parameters for each of the discrete units and, therefore, account, to some degree, for different energy losses in the surrounding soils and the various pile-type effects. Such analyses may result in a force distribution along the pile that differs from the actual one, but by keeping the energy balanced, the calculated total resistance may be accurate (a case study of large instrumented piles that showed such results was presented by Paikowsky, 1982). A method that presents a simplified solution for the wave propagation phenomenon (i.e., the Case method, see section 3.5), with the attempt to correlate the energy losses to the soil type at the tip, does not capture the actual phenomena and does not necessarily keep a balance of energy. The resulting factor $\left(\mathrm{J}_{\mathrm{c}}\right)$ is difficult (if not impossible) to correlate to the soil type at the pile tip. A simple field method that predicts pile capacities in "real-time" remains attractive, however, because of its ability to monitor pile capacity during driving.

3.4 FIELD ANALYSIS AND THE PILE-DRIVING ANALYZER

Capacity evaluation in the field is attractive because of the potential to increase quality control and to improve construction efficiency of deep foundation systems. The procedure of monitoring pile driving by dynamic measurements is well established. Early large-scale studies (e.g., Michigan State Highway Commission, 1965; Texas Highway Department, 1973; and Ohio Department of Transportation, 1975; see also Highway Research Record, 1967 and Goble et al., 1970) led to the development of commercial systems that enable complete and relatively easy acquisition of dynamic measurements and analysis during driving. These dynamic measurements include acceleration and strain readings recorded at the pile top under each hammer blow. The most popular acquisition and analysis system in the United States is the pile-driving analyzer (PDA) (see Pile Dynamics Inc., 1990).

The PDA calculates a number of different physical quantities, including force (from strain readings), velocity and displacement (from acceleration readings), maximum delivered energy (to the pile top), and tension and compression stresses. These results are used to predict the pile capacity, as well as to examine the hammer performance, stresses in the pile, and pile integrity. The PDA predicts pile capacities in the field by utilizing a simplified evaluation method, known as the Case method.

3.5 THE CASE METHOD

3.5.1 General

The Case method (see Goble et al., 1970 and Rausche et al., 1975), is a simple field procedure used by the PDA to estimate pile capacities. Analysis by the Case method is based on the assumptions of a uniform elastic pile, ideal plastic soil behavior, and a simplified wave propagation formulation. Employed are force and velocity measurements taken at the pile top and a correlation between the soil at the pile tip to a damping parameter.

3.5.2 The Case Method Equation

The Case method calculates the total soil resistance (RTL) active during pile-driving, using the following equation:

$$
\begin{equation*}
R T L=\frac{\left[F(T l)+F\left(T l+\frac{2 L}{C}\right)\right]}{2}+\left[v(T I)-v\left(T l+\frac{2 L}{C}\right)\right] * \frac{M C}{2 L} \tag{6}
\end{equation*}
$$

where	F (T1)	$=$	measured force at the time T1
	$\mathrm{F}(\mathrm{T} 1+2 \mathrm{~L} / \mathrm{C})$	=	measured force at the time T1 plus $2 \mathrm{~L} / \mathrm{C}$
	v (T1)	$=$	measured velocity at the time T1
	$\mathrm{v}(\mathrm{T} 1+2 \mathrm{~L} / \mathrm{C})$	=	measured velocity at the time T 1 plus $2 \mathrm{~L} / \mathrm{C}$
	L, M	$=$	length and mass of the pile, respectively
	C	$=$	speed of wave propagation in the pile.

Different variations of the Case method have been developed taking T1 as the time of impact or modified to include a time delay constant allowing higher RTL values to be obtained. The time T1 is defined, in equation form, as:

$$
\begin{equation*}
T 1=T P+\delta \tag{7}
\end{equation*}
$$

where TP $=$ time of the impact peak $\delta=$ time delay.

The time delay is required in soils capable of large deformations before achieving full resistance (see figure 6). A time delay is also used in situations where the hamrer impact is uneven (PDA Manual, 1990).

The total resistance calculated is a combination of the static resistance (S) which is displacement-dependent, and the dynamic resistance (D) which is velocity-dependent. Therefore, the total resistance (Goble et al., 1975) is:

$$
\begin{equation*}
R T L=S+D \tag{8}
\end{equation*}
$$

Several factors that influence the pile-soil system must be considered when the total predicted resistance is evaluated. These factors include the damping coefficient, timedependent soil strength changes, and refusal driving when the soil's resistance is not fully mobilized under a single hammer blow.

3.5.3 Case Damping Coefficient

The dynamic resistance D is considered to be viscous in nature, hence, a function of the velocity at the pile toe ($\mathrm{V}_{\mathrm{toc}}$) and a damping constant (J) where:

$$
\begin{equation*}
D=J * V_{\text {toe }} \tag{9}
\end{equation*}
$$

By applying the wave propagation theory, the pile toe velocity can be calculated as a

Figure 6. Force and velocity traces showing two impact peaks indicative of driving in soils capable of large deformations.
function of the velocity at the pile top (Goble et al., 1975):

$$
\begin{equation*}
V_{t o e}=2 V_{t o p}-\frac{L}{M C} R T L \tag{10}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\mathrm{L} & =\text { pile length } \\
\mathrm{M} & =\text { pile mass } \\
\mathrm{C} & =\text { wave speed of the pile material } \\
\mathrm{R} & =\text { total resistance } \\
\mathrm{V}_{\text {top }} & =\text { velocity at pile top. }
\end{array}
$$

$\mathrm{V}_{\text {top }}$ is taken as the pile top velocity at the time T 1.

According to Goble et al. (1975), remolding effects cause the majority of the damping resistance to be concentrated near the pile tip. Consequently, the damping constant is determined according to the soil type at the pile tip. In most cases, the damping constant (J) is proportional to the pile properties (EA/C) and, therefore, is represented by a dimensionless coefficient (J_{c}) using the following equation:

$$
\begin{equation*}
J=J_{c} \frac{E A}{C} \tag{11}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\mathrm{J}_{\mathrm{c}} & =\text { dimensionless Case damping coefficient } \\
\mathrm{E} & =\text { elastic modulus of the pile material } \\
\mathrm{A} & =\text { pile cross-sectional area } \\
\mathrm{C} & =\text { wave speed of the pile material. }
\end{array}
$$

The recommended values for J_{c} have changed since the initial estimates made by Goble et al. (1975) as a result of improvements to the PDA and continued research in this area. In 1975, Goble et al. (1975) published recommended J_{c} values for various soil types. These recommendations have been revised in PDA Manual-Model GCPC (1990). Both sets of recommended J_{c} values are given in the following table:

Table 2. Recommended J_{c} values according to the soil type at the pile tip.

Soil Type at Pile Tip	Goble et al., 1975	PDA Manual, 1990
clean sand	0.05	0.10 to 0.15
silty sand	0.15	0.15 to 0.25
sandy silt	0.2	-
silt	0.3	0.25 to 0.40
silty clay / clayey silt	0.55	-
silty clay	-	0.40 to 0.70
clay	1.1	0.70 to 1.00

It is suggested that J_{c} values less than 0.10 are unlikely. Large J_{c} values result in more conservative capacity predictions, and the range of $J_{c}=0.5$ to 1.0 can cause large capacity differences (PDA Manual, 1990). J J_{c} can be back-calculated from static load test results and applied to other piles nearby, provided they are driven in similar soil strata. Negative damping coefficients are physically meaningless and are set to zero should they occur. If load testing to failure is not conducted at a particular site, subsurface
investigation of the underlying soil strata must be carried out to provide the necessary information needed to estimate J_{c}.

3.5.4 Case Method Variations

Several variations of the Case method have evolved for the analysis of different driving situations and soil types. The variations are similar in that they all begin with the initial total resistance prediction (RTL) of equation (6). Five distinct methods are used to employ the predicted RTL: Damping Factor Method, the Maximum Resistance Method, the Minimum Resistance Method, the Unloading Method, and the Automatic Method. A brief review of each of these methods follow (for details, see the 1990 PDA Manual).
(a) The Damping Factor Method, RSP

The Damping Factor Method uses the velocity at the toe of the pile $\left(\mathrm{V}_{\mathrm{toc}}\right)$ of equation (10), which may be rewritten as:

$$
\begin{equation*}
V_{\text {toe }}=V_{\text {top }}+\frac{[F(T I)-R T L]}{\frac{M C}{L}} \tag{12}
\end{equation*}
$$

and the Case damping constant $\left(\mathrm{J}_{\mathrm{c}}\right)$ is nondimensionalized by the pile impedance (MC/L), to determine the static capacity (RSP) (PDA Manual, 1990). The equation, which was discussed in the last section, utilizes damping constants empirically derived from static load tests where:

$$
\begin{equation*}
R S P=R T L-J \frac{M C}{L} * V_{w e} \tag{13}
\end{equation*}
$$

This expression is the standard Case method equation used for normal driving conditions.

(b) The Maximum Resistance Method, RMX

The Maximum Resistance Method uses the RSP equation with $2 \mathrm{~L} / \mathrm{C}$ as a fixed quantity. The time T1 used in the RSP equation is varied between the impact time (TP) and TP +30 ms to find the corresponding maximum RSP value, denoted as RMX (see figure 6).

Originally (Goble et al, 1967), it was proposed to choose the time T 1 as the time when the pile top velocity becomes zero (referred to (e), the automatic method, RAU). Time delay methods were then developed (Goble et al., 1975). The most familiar one is $\mathrm{T} 1=\mathrm{TP}$, the time of maximum velocity. This was then modified to $\mathrm{T} 1=\mathrm{TP}+\delta$, where δ is a time-delay constant required to enable full resistance to be developed. The maximum resistance method (RMX) is a variation of this approach, where T1 will result in the maximum static resistance $\left(\mathrm{R}_{\mathrm{s}}\right)$. This T 1 is not necessarily the same one that will produce the maximum total resistance RTL. RMX can be used in cases of large so:l
quakes or short rise times where the full resistance is not mobilized by the time the stress wave reaches the pile toe. This method is advantageous for large displacement piles with substantial end-bearing. The RMX resistance may not, however, develop until unacceptably large displacements occur. Caution should be taken when using RMX in silts and clays with high damping factors because over-predictions may result.

(c) The Minimum Resistance Method, RMN

Tension cracks, splices, and changes in cross-sectional area may vary the wave speed along a single pile. To compensate for these changes, the Minimum Resistance Method uses the first or second peak as the impact time (T1) in the capacity equation. The tip reflection time, T 2 or ($\mathrm{T} 1+2 \mathrm{~L} / \mathrm{C}$), is varied through the $2 \mathrm{~L} / \mathrm{C}$ "window," which is centered around T 2 and is ± 20 percent of $2 \mathrm{~L} / \mathrm{C}$. The minimum capacity (RMN) is determined using the tip reflection time. This method can be used with confidence if the blow count is less than 40 blows per foot (131 blows per meter) (PDA Manual, 1990).
(d) The Unloading Method, RSU

For long piles with high frictional resistance, the measured velocity can become negative before a reflection from the tip is observed at time T2. Under such conditions, the upper portion of the pile experiences decreasing displacement or rebounding. This results in an unloading of the upper soil layers resistance and the computed capacities are under-predicted. The Unloading Method compensates for this by calculating the total friction in the upper unloading layers from the force velocity difference. This friction is then divided by two thus yielding the correction. The unloading resistance (RSU) then is:

$$
\begin{equation*}
R S U=R T L+K-J\left[F(t i)+\nu(T l) * \frac{M C}{L}-R T L-K\right] \tag{14}
\end{equation*}
$$

where $K=$ the unloading correction coefficient.
The correction coefficient is calculated from:

$$
\begin{equation*}
K=\frac{\left[F(T 3)-V(T 3)\left(\frac{M C}{L}\right)-F(T P)+V(T P)\left(\frac{M C}{L}\right)\right]}{2} \tag{15}
\end{equation*}
$$

where $\mathrm{T} 3=2 \mathrm{TP}+21 / \mathrm{C}-\mathrm{T} 0$ and T 0 is the time of zero velocity (before 2L/C) (PDA Manual, 1990).
(e) The Automatic Method, RAU

The Automatic Method computes the capacity (RAL) for the first time where the computed pile toe velocity ($\mathrm{V}_{\mathrm{toc}}$) is zero. This method, originally proposed by Goble et al. (1967), does not select a damping coefficient because damping must be zero when $\mathrm{V}_{\text {toe }}$ is zero; therefore, the resistance at this time is completely static. This method
provides an exact solution for the end-bearing for piles with no skin friction and is recommended for use on piles with very little frictional resistance. Another variation of this method attempts to convert any skin friction into end-bearing resistance. This is proposed for piles having moderate skin friction, but are unaffected by J (PDA Manual, 1990).

3.5.5 Evaluation

(a) Critical Discussion

Two fundamental questions should be addressed regarding the Case Method approach:

- What is the time (T 1) that should be used to calculate the total resistance (RTL)?
- What is the meaning and reliability of the Case damping factor?

Based on the various methods described in section 3.5.4, the Case method produces a range of results according to the way in which it is employed. The "right" way and the "correct" T1 are questionable, and depend on the driving system and soil and pile conditions.

The Case damping coefficient J_{c} is based on viscous damping in a dimensionless form. Thus, the dynamic resistance is correlated to the calculated velocity at the tip of the pile, and J_{c} is assumed to be related to the soil type at the pile's tip. To find the J_{c} to be used for different soils, the damping coefficient was calculated to fit failure loads obtained from static load tests. These damping coefficients were calculated for a range of ± 20 percent of the load test results, resulting in ranges of the J_{c} coefficient that were then ascribed to each soil type (Goble et al, 1975).

The correlation between J_{c} and soil type is questionable and may or may not be feasible. The following section evaluates the use of J_{c} and demonstrates that the pile's dynamic resistance is influenced by several additional factors that cannot be appropriately considered through the use of the Case damping factor. A detailed examination of the J_{c} parameter is presented in section 8.2.1.

(b) Review of Existing Experience

The Case method has been the subject of different comparison studies attempting to evaluate it's reliability. When static load testing is conducted on a pile, the corresponding Case damping coefficient can be obtained through back-calculating. This coefficient can then be compared to typical J_{c} values recommended to be used with the given soil conditions. Such information enables the determination of the reliability of the Case method for individual testing sites. Comparisons between the Case method and CAPWAP analysis results (in place of static load testing) have also been conducted (see, for example, Thompson and Goble (1988) or Riker and Fellenius (1988)).

The Trow Company (1978) examined 226 piles and 40 static load tests at 21 different sites. Their report concluded that the Case Method was shown to be in closer agreement with static load tests than dynamic formulas. For end-bearing piles, the range of the applicable damping factor is narrow, and the use of J_{c} values between 0 and 0.3 led to predictions within ± 25 percent of the load test results (excluding piles in till at one site). However, for friction piles, the choice of damping values was critical for the correct prediction of the capacity, and the tested pile's capacity was about twice the predicted one.

Four full-scale static load tests were conducted offshore and analyzed by Paikowsky (1979-1982). Open-ended pipe piles (48 in and 60 in [1219 mm and 1524 mm] diameters) were dynamically monitored during driving in a predominantly calcareous sand soil profile. The Case damping coefficient values (J_{c}) for capacity predictions in the range of ± 20 percent from the load test results are presented in figure 7 . In order to be consistent with the data analysis of chapter 6 , the J_{c} values of figure 7 are based on the same data used for CAPWAP and TEPWAP analyses that were somehow different from the one observed in the field. These values varied between $\mathrm{J}_{\mathrm{c}}=0.06$ to 0.37 , fitting the load tests, and in different ranges for each of the individual cases (e.g., $0.18 \leq \mathrm{J}_{\mathrm{c}} \leq 0.52$ for T-2/A and $-0.20 \leq \mathrm{J}_{\boldsymbol{c}} \leq 0.31$ for T-2/B).

Despite the Case method being used in only one of its forms, a significant scatter exists in the "recommended" damping coefficient field values that are considered more accurate than values from a general data set (see table 2).

A pile-testing study that began in 1980 was conducted in Milwaukee, WL, to establish foundation design criteria, such as the most suitable pile type and driving depth (see Riker and Fellenius, 1988). This project was undertaken because of the extensive pile installation program required for the construction of a wastewater plant (3,000 to 4,000 driven piles). The test piles consisted of steel H -piles and closed-ended pipe piles, with varying thicknesses, and were founded in glacial soil deposits. Approximately 40 piles were monitored during initial driving and/or during restriking, using a pile driving analyzer (PDA). All of these piles were analyzed using CAPWAP, and from these results, a J_{c} value was back-calculated for each pile. This analysis allowed engineers to correlate J_{c} values for the remaining piles at the site, provided they are founded in similar soils. Similarly, the Case method was performed on each test pile and capacity predictions were obtained using the calibrated J_{c} factors determined from the CAPWAP analyses. The results of this comparison show that when using pile-site-calibrated J_{c} factors for thick-walled steel pipe piles, the Case method predictions were within 20 percent of the CAPWAP results. Riker and Fellenius concluded that in light of the consistency of the J_{c} values at this site, the reliability of the Case method for rapid field predictions was demonstrated. They also cautioned, however, that additional CAPWAP analyses are necessary if other pile types are to be used at this site.

A comparison study between static load tests to failure and the Case method was carried

Figure 7. Case damping $\left(\mathrm{J}_{c}\right)$ values for capacity prediction of offshore piles in the range of ± 20 percent from load test results (after Paikowsky, 1982).
out in Europe by Bustamante and Weber in 1983 (Bustamante and Weber, 1988). This study consisted of dynamically monitoring six different shaped-steel H-piles using a PDA and load testing them to failure. The piles were tested at two different sites, and the general soil profiles consisted of sandy and clayey soils, respectively. The study results indicated that the predictions made by the Case method and CAPWAP were in agreement with capacities determined by static load testing. However, the Case damping
coefficients for the sandy site required calibration from CAPWAP results or static load test results.

Thompson and Goble (1988) tested 25 piles at 9 different sites across the eastern regions of Canada and the United States. All of the piles were founded in granular soils and were dynamically monitored using the PDA. CAPWAP analyses had been performed at the beginning of restriking (BOR). The results confirmed that the Case damping constants required to match CAPWAP capacities were high compared to recommended values. These high damping constants varied from 0.24 to 0.70 in the same soil on the same site and from 0.24 to 0.85 for all nine sites. These values are in sharp contrast to the $\mathrm{J}_{\mathrm{c}}=0.05$ that was recommended to be used in sand by Goble et al. (1975) and $\mathrm{J}_{\mathrm{c}}=$ 0.10 to 0.15 recommended by the PDA Manual (1990). Higher damping constants than expected will result in capacity over-predictions by the Case method. Thompson and Goble pointed out that their wide-range data set eliminated the possibility of treating these results as consequence of localized geographic or geologic conditions, and suggested that since they could not find an explanation for these high values, every project involving piles driven in sand should be calibrated for the correct J_{c} value.

Paikowsky and Chernauskas (1992) examined nine piles that were monitored during driving at the end of driving and/or at the beginning of restrike and were driven into soils ranging from sandy-silt to rock and till. Their study included static load tests to failure, whereby the failure loads were then employed to back-calculate Case damping factors. The results indicated that there is no specific correlation between the damping coefficient and the soil type. Thompson and Goble (1988) further concluded that it may be necessary at some projects to incorporate CAPWAP analyses with every pile to confirm the predictions by the Case method.

3.5.6 Capacity Predictions

The static resistance of the pile is predicted by subtracting the dynamic resistance from the total resistance (equation 8). As the static resistance may be time-dependent, it is often necessary to restrike piles and conduct dynamic analyses sometime after the end of initial driving (EOD). Setup may cause the static capacity to increase, while relaxation may cause the static capacity to decrease. Setup most often occurs in cohesive soils due to either (1) dissipation of excess pore pressure in the vicinity of the pile after driving or (2) thixotropy (an increase in strength with time without changing the water content) and a variety of reasons not always well-understood that may be referred to as "aging" (Schmertmann, 1991).

Soil relaxation most often occurs when piles are driven into dense fine sand or silts, shearing the soil beyond its peak resistance to residual strength. This results in smaller long-term frictional resistance. Although relaxation occurs less frequently than setup, its determination may be crucial. Restriking can lead to a more economical foundation system in the event of setup, and can prevent major structural problems in the event of
relaxation (Likins et al., 1990).
When driving reaches refusal (e.g., a set of 0.1 in [2.5 mm] or less, most often regarded as 12 blows per inch [0.47 blows per millimeter]), the Case method may under-predict the static capacity of the pile. This is consistent with the concept that the driving operation must induce failure in the pile-soil system. If the pile experiences a small permanent set, or none at all, then the soil resistance is not fully mobilized (which indicates that the pile-soil system is mostly within the elastic range). Under such conditions, the predicted static capacity relates to the mobilized value only, often resulting in an under-prediction (PDA Manual, 1990).

3.5.7 Summary

The dynamic analysis of pile driving is based on the one-dimensional wave equation that describes the stress propagation through a slender elastic body. An additional term that accounts for the external forces acting on that body is added to the equation in order to consider the soil resistance. Traditionally, this resistance is considered to consist of static and dynamic components, as previously described. Practically, however, the dynamic component (even though represented by viscous damping) accounts for other energy losses, such as radiation, soil inertia, true damping, and more (Paikowsky and Whitman, 1989). These factors are determined by the pile shape, the acceleration at the pile toe, and the surrounding soil and, hence, cannot be correlated only to the soil type at the pile tip, as suggested by the Case method. The wave equation type of solutions (including CAPWAP) can consider the damping at each depth of pile penetration and, therefore, account for the different surrounding soils and pile type. The Case method simplified solution is not capable of this damping consideration. The correlation of the energy losses to the pile tip velocity and the soil type at the tip oversimplifies the complex phenomena; the resulting damping factor is difficult to correlate, leading to unreliable predictions. The accuracy of the Case method as a means of analyzing driven piles in the field will be further examined in chapter 8 . based on the analysis of data set PD/LT in appendix A .

CHAPTER 4-THE ENERGY APPROACH

4.1 BACKGROUND

While the static soil resistance is represented relatively adequately by the elasto-plastic soil model (see figure 3), the viscous damping accounts practically for various energy losses such as radiation, soil inertia (at the pile tip in particular), true damping, and viscosity in cohesive soils. As such, the model parameters (i.e., damping coefficients) cannot be calibrated on the basis of soil type alone. If such a calibration was possible, there would be no need to use different damping coefficients for the same soil next to the toe or the skin.

This observation has three major implications:

1. The success of the soil model in correctly representing the physical phenomena next to the pile is really controlled by its ability to account for the energy losses (in particular, those due to dynamic actions).
2. Calibration of the soil model parameters cannot be done on the basis of soil type alone. The calibration requires consideration of the combination of the pile and soil types (mainly small vs. large displacement piles), driving resistance, and, in addition, awareness of the installation details during construction (e.g., the use of jetting or preaugering).
3. A byproduct of 1 and 2 can explain why one method of analysis fails while the other succeeds (e.g., the Case method and CAPWAP).

The prediction of static capacity from pile driving, either by dynamic equations or by the one-dimensional wave equation, requires a balance of energy (i.e., the total energy that is transferred to the pile through the driving system is equal to the work done by the resisting forces during penetration).

Even though most of the theoretical and semi-empirical dynamic formulas were based on the energy principle, their reliability is very low, for the following reasons (see section 3.2 for discussion):

- Their analysis of Newtonian impact between the ram and the cushion/capblock system is theoretically invalid and, therefore, it led
to incorrect predictions of the amount of energy transferred to the pile.
- The elastic soil-pile rebound (quake) was estimated or calculated based on a static approach.

Analyses such as CAPWAP, on the other hand, utilize dynamic measurements and, therefore, the transferred energy is known. With the appropriate pile and soil modeling, the number of unknowns is limited and the different energy losses can be accounted for indirectly through dynamic resisting forces based on viscous dampers, as previously discussed.

4.2 UNDERLYING CONCEPT

The concept of the "Energy Approach," in which basic energy relations are used in conjunction with dynamic measurements, was presented by Paikowsky (1982). Limited additional studies were carried out by Paikowsky (1984), McDonnell (1991), and Paikowsky and Chernauskas (1992). The underlying concept of this approach is the energy balance that is developed between the total energy delivered to the pile and the work done by the pile/soil system. The required "real-time" prediction in the field calls for a simplified solution and, therefore, does not consider the propagation process, while distinguishing between:

- Energy loss from elastic soil/pile deformations.
- Work done by the static resistance on plastic soil deformations.
- Energy loss due to various combined factors associated with the pile penetration (i.e., damping, radiation, inertia, etc.).

4.3 THE ENERGY EQUATION

The energy delivered to the pile is:

$$
\begin{equation*}
E_{n}=\int V(t) F(t) d t \tag{16}
\end{equation*}
$$

where $\quad V(t)=\quad$ velocity signal at the pile top for the analyzed blow $F(t)=$ force signal at the pile top for the analyzed blow.

The velocity signals are obtained by measurements of acceleration, $a_{c c}(t)$, where:

$$
\begin{equation*}
V(t)=\int a_{c c}(t) d t \tag{17}
\end{equation*}
$$

The force signals are obtained by processing the measurements of strain, $\epsilon(\mathrm{t})$, whereby:

$$
\begin{equation*}
F(t)=\epsilon(t) E A \tag{18}
\end{equation*}
$$

where $E=$ modulus of elasticity of the pile material $\mathrm{A}=$ cross-sectional area of the pile.

These measurements and calculations are immediately processed by the data acquisition system after each hammer blow.

The force/displacement relations of the pile/soil system are assumed to be elasto-plastic, which is consistent with the basic dynamic equations and static resistance of soil models in the wave equation analyses.

The total work done by such a system (elastic and plastic), therefore, will be (referring to figure 1):

$$
\begin{equation*}
W=R_{u}\left(S+\frac{Q}{2}\right) \tag{19}
\end{equation*}
$$

where $\quad R_{u}=$ yield resistance
$\mathrm{Q}=$ quake denoting the combined elastic deformation of the pile and soil
$\mathrm{S}=$ set denoting the plastic deformation.
The quake is determined by finding the maximum displacement reduced by the plastic deformation (permanent set) under each hammer blow, such that:

$$
\begin{equation*}
Q=D_{\max }-S \tag{20}
\end{equation*}
$$

where $\quad D_{\max }=\quad$ maximum value of $\int V(t) d t$.
The permanent set can theoretically be determined by $\mathrm{D}_{\text {fin }}=$ final value of $\int \mathrm{V}(\mathrm{t}) \mathrm{dt}$. However, the displacement is the second integration of the measured acceleration. Any offset in the acceleration measurement (e.g., due to DC voltage in the accelerometers) will have a relatively small effect on $\mathrm{D}_{\text {max }}$, but a much greater effect on $\mathrm{D}_{\text {fin }}$ (for further discussion, see experimental work by Bernardes, 1989). It is more practical to use the field blow count, such that $S=S e t=1 /$ BPI (blows per inch) (see figure 8).

The maximum resistance under the above assumptions is obtained from $E_{n}=W$, and becomes the proposed Energy Approach (uncorrected):

$$
\begin{equation*}
R_{u}=\frac{E_{n}}{\operatorname{Set}+\frac{\left(D_{\max }-S e t\right)}{2}} \tag{21}
\end{equation*}
$$

This resistance can be taken as the maximum possible resistance and can be correlated to the predicted static capacity $\left(\mathrm{P}_{\mathrm{u}}\right)$ by a correlation factor, such that:

$$
\begin{equation*}
P_{u}=K_{s p} * R_{u} \tag{22}
\end{equation*}
$$

where $\quad \mathrm{K}_{\mathrm{sp}}=\quad$ "static pile" correlation factor accounting for all dynamic energy losses.

The K_{sp} factor is correlated to pile type (small vs. large displacement), soil type (mainly granular vs. cohesive), and driving resistance.

4.4 ENERGY LOSSES AND SOIL INERTIA

4.4.1 General Considerations

Soil inertia is a major factor contributing to the energy loss during driving. As such, a substantial portion of the dynamic resistance should be a function of two parameters:

- Mass/volume of the displaced soil that is a function of the pile geometry, namely, small vs. large displacement piles.
- Acceleration of the displaced soil, especially at the tip that conveniently can be examined as a function of the driving resistance.

4.4.2 Soil Displacement

The volume of the displaced soil is identical to the volume of the penetrating pile, excluding the cases in which pile plugging takes place (Paikowsky and Whitman, 1990). The piles, therefore, can be classified as small (e.g., H and open pipe) and large (e.g., closed pipe and concrete) piles. Additional classification of open-pipe piles can take place according to a tip-area ratio similar to that used for soil samplers (Paikowsky et al., 1989).

As most of the soil displacement takes place at the tip area, the classification of piles can

Figure 8. The proposed way of obtaining the combined quake, Q (soil and pile). [Not to scale.]
be better served by looking at the ratio between the piles embedded surface area and the area of the pile tip:

$$
\begin{equation*}
A_{R}=\frac{A_{s k i n}}{A_{t i p}} \tag{23}
\end{equation*}
$$

where $\quad A_{R}=$ pile area ratio $\mathrm{A}_{\text {skin }}=$ pile's surface area in contact with soil $A_{\text {tip }}=$ area of the pile tip.

According to this ratio, a pile that is traditionally referred to as a "large displacement" pile can behave like a small displacement pile if it is driven deep enough. Because the frictional resistance of a pile increases as the pile skin area in contact with soil increases, the effect of the soil mobilized at the tip decreases. As the pile's embedded surface area and the skin friction increases, the energy losses resulting from the mobilization of the soil mass at the pile tip will decrease relative to the energy losses along the side of the pile. For example, the area ratio for cylindrical (closed-end) piles is:

$$
\begin{equation*}
A_{R}=\frac{2 \Pi R * D}{\Pi R^{2}}=\frac{2 D}{R} \tag{24}
\end{equation*}
$$

in which $\mathrm{D}=$ penetration depth
$\mathbf{R}=$ pile radius.
For the same pile diameter, this area ratio increases linearly with depth, e.g., a 14 -in ($356-\mathrm{mm}$) diameter pile will have an area ratio of 69 at the depth of $20 \mathrm{ft}(6.1 \mathrm{~m}$) and an area ratio of 360 at the depth of $105 \mathrm{ft}(32 \mathrm{~m})$. It is clear that the effect of soil inertia at the tip in the second case will be substantially smaller than that in the first case and the pile may be classified as a "small displacement pile." A quantitative boundary between "small" and "large" displacement piles on the basis of the area ratio is presented in section 8.5.

4.4.3 Soil Acceleration

The energy loss through the work performed by the inertia forces at the displacement of the soil mass at the tip is directly related to the acceleration of this mass. The direct evaluation of these accelerations are beyond the scope of the present research. The indirect evaluation of these accelerations can be performed through the driving resistance, which is the measure of the pile's displacement under each hammer blow. With low driving resistance there is high velocity (i.e., free-end analogy) and high acceleration at the pile tip, hence, high inertia of the tip soil mass. This results in a soil inertia "force" that, when multiplied by the pile displacement at the tip, produces a large loss of energy. In the case of high driving resistance (hard driving), there is little, if any, mobilization of the tip soil mass and the acceleration at the tip is very low. Therefore,
the corresponding energy loss is small.

4.4.4 Expected Performance

In summation, according to the above hypothesis, the largest loss of "unknown" energy occurs when large displacement piles experience easy driving (large tip displacement). The smallest loss of "unknown" energy occurs with small displacement piles driven under high blow counts (hard driving).

Considering the preceding criteria, the Energy Approach should theoretically produce two distinct trends:

- In the case of high "unknown" energy losses, i.e., in easy driving of piles with small area ratios, the Energy Approach predictions should yield a tendency of over-prediction. Hence, R_{u} is expected to be higher than the actual resistance as the large energy losses were not considered. As a result, K_{sp} is expected to be smaller than unity ($\mathrm{K}_{\mathrm{sp}}<1.0$).
- In the case of small "unknown" energy losses, i.e., hard driving of piles with large area ratios, the Energy Approach predictions should yield a tendency of under-prediction. Hence, R_{u} is expected to be smaller than the actual resistance as there are only small energy losses and the full capacity may not have been developed. As a result, K_{sp} is expected to be higher than unity ($\mathrm{K}_{\mathrm{sp}}>1.0$).

CHAPTER 5 - DATA BASE BUILDUP

5.1 GENERAL

In order to examine the dynamic analyses and calibrate the Energy Approach method, extensive case study data was assembled. The information was divided into two major categories describing two data sets: set PD/LT and set PD. Data set PD/LT contains data for piles on which dynamic measurements, office analyses (CAPWAP or TEPWAP), and a static load test to failure have been conducted. Data set PD contains data for piles that were monitored by dynamic measurements during driving, followed by office analyses and occasionally a static proof test (not to failure). Section 1.3 outlines the source and/or reference of the obtained data. The following chapter describes the procedures used for analyzing the case studies comprising the data sets.

5.2 DATA SET PD/LT

The piles of data set PD/LT were analyzed in two stages: a static load test analysis followed by a dynamic measurements analysis. The static load test analysis was intended to produce a representative static resistance (denoted by R_{s}) for each pile, using several load test interpretation methods. The dynamic measurements analyses involved several different methods, including the application of computer programs specifically developed for the analysis of dynamic measurements taken during driving.

5.2.1 Static Load Test Analysis

A universal criterion capable of establishing the ultimate capacity of a pile is essential in improving the accuracy of static load test interpretations. Various ultimate load criteria have been proposed and used by researchers and design organizations (see, for example, Vesic, 1977 and Fellenius, 1989). Significant disagreements remain among these methods as they are based on different principles and produce different values under varying pile types and sizes, load test procedures, and surrounding soils.

Vesic (1972) pointed out that interpreting a pile's ultimate load based solely on a visual examination of its load-settlement curve (i.e., shape of the curve) may be misleading and can result in different pile capacities depending on the scale used to plot the curve.
Figures 9 and 10 demonstrate this point by presenting the same load-settlement relations using two different scales. Figure 9 shows a load-settlement curve indicating a pile capacity of approximately $140 \mathrm{kips}(623 \mathrm{kN})$ whereas the curve in figure 10 suggests that the pile's displacement at $140 \mathrm{kips}(623 \mathrm{kN})$ may still be based on the elastic compression of the pile and that the pile capacity is approximately 170 kips (756 kN).

Figure 9. Load-settlement curve of pile-case 95 with the elastic compression line inclined at 20 degrees.

Figure 10. Load-settlement curve of pile-case 95 with a scale that does not consider the elastic compression of the pile (following Vesic, 1977).

One solution to this problem is to implement a common scale, based on the pile's elastic deformation. When plotting load-settlement curves, the elastic deformation of a fixed end, frictionless pile is expressed as:

$$
\begin{equation*}
\delta=\frac{P L}{E A} \tag{25}
\end{equation*}
$$

where $\quad \delta=$ calculated elastic deformation of the pile
$\mathrm{P}=$ applied load
$\mathrm{L}=$ pile length
$\mathrm{E} \quad=\quad$ elastic modulus of the pile material
$\mathrm{A}=$ cross-sectional area of the pile.
The elastic compression line obtained by equation 25 is based on the assumption that all of the load applied to the pile top is transferred to the pile toe. To implement a scale proportional to all load settlement curves, the elastic compression line should be inclined at an angle of about 20 degrees to the load axis (see figure 11).

In order to facilitate this scale, all of the load-settlement curves in set PD/LT were digitized using the program DIGITIZE, developed at University of Massachusetts-Lowell by Chernauskas and Paikowsky. These curves were then replotted, using the graphics software GRAPHER, to produce curves that were proportional to each pile's elastic compression line inclined at 20 degrees.

After replotting, each load-settlement curve was analyzed using five different failure load interpretation procedures: Davisson's Criteria, the Shape of Curve method, Limited Total Settlement methods ($\Delta=1$ in [25.4 mm] and $\Delta=0.1 B$), and DeBeer's method.
(a) Davisson's Criteria (Davisson, 1972), or offset limit, defines the failure load of a pile as the load corresponding to the settlement that exceeds the elastic compression of the pile (δ) by an offset (X) equal to 0.15 in (3.8 mm) plus a factor equal to the diameter of the pile divided by 120 . The offset is simply:

$$
\begin{equation*}
X=0.15+\frac{B}{120} \tag{26}
\end{equation*}
$$

where $B=$ diameter of the pile in inches.
The Davisson's Criteria line is parallel to the elastic compression line and predicts the failure load at its intersection with the load-settlement curve. Figure 11 illustrates the use of Davisson's failure criteria for load-settlement relations of pile-case 50, yielding a capacity of $817 \mathrm{kips}(3634 \mathrm{kN})$.
(b) The Shape-of-Curve Method is a failure load approximation that usually yields a

Figure 11. Load-settlement curve for pile-case 50 with the elastic compression line inclined at approximately 20 degrees.
range of values over which the pile is considered at or near failure. The bourdaries of this range can be determined by examining the minimum curvature in the loadsettlement curve through lines drawn tangent to the load-settlement curve (similar to the method proposed by Butler and Hoy (1977)). The failure range is relatively easy to define for load-settlement curves that exhibit general failure or plunging failure (rapid settlement with slightly increased loads) (see figure 11 for example). Piles that experience local failure, or non-plunging failure, are difficult to analyze using the shape-of-curve method because of the uniform changes in slope of lines drawn tangent to the curve. Figure 11 illustrates the use of the shape-of-curve procedure, yielding an
estimated capacity range of between 685 kips and $825 \mathrm{kips}(3047 \mathrm{kN}$ and 3670 kN) with a representative average of $755 \mathrm{kips}(3358 \mathrm{kN})$.
(c) The Limited Total Settlement Methods, $\Delta=1$ in (25.4 mm) and $\Delta=0.1 \mathrm{~B}$ (Terzaghi, 1942), define the failure load as the load corresponding to settlements of 1 in and 0.1 B , respectively, where B is the diameter of the pile. These methods are not applicable in many cases. For example, the elastic compression for a very long steel pile often exceeds 1 in (25.4 mm) and/or 0.1B without inducing any plastic deformation in the soil. Figure 11 shows as an example, a load-settlement curve for pile-case 50 , a 24 -in ($610-\mathrm{mm}$) square concrete pile that experiences a plunging failure well before a displacement of 1 in (25.4 mm). Also, it is obvious that a settlement of 0.1 B , or 2.4 in (61 mm) in this case, does not represent the failure load of this pile and, therefore, is not applicable.
(d) DeBeer's log-log Method (DeBeer, 1970) defines the failure load as the load corresponding to the intersection of two distinct slopes created by the load-settlement data plotted using logarithmic scales. Figure 12 illustrates the use of DeBeer's criteria for the load-settlement curve of pile-case 50 , leading to an estimated capacity of 748 kips (3327 kN). The two slopes are especially visible for piles that experience plunging failures, yet when using DeBeer's method piles that undergo local failures, the result may be a range of values. As mentioned earlier, each load-settlement curve was digitized from the standard linear plots that they were presented on and the data was stored. This data was later plotted in logarithmic scales to utilize DeBeer's method.
(e) The Representative Static Capacity: The capacity results for each method were reviewed independently, based on the load-settlement curves for each pile. After considering the pile type, soil type, size of each pile, and the load test procedure, unrealistic results were eliminated, and the acceptable values were averaged, yielding a final static capacity (R_{s}). For example, for pile-case 50 . presented in figures 11 and 12, the considered criteria were: Davisson's $=817 \mathrm{kips}(3634 \mathrm{kN})$, shape of curve $=685-825$ kips ($3047-3670 \mathrm{kN}$), 1.0 -in settlement $=887 \mathrm{kips}(3945 \mathrm{kN}), 0.1 \mathrm{~B}$ settlement $=\mathrm{NA}$, and DeBeer's $=748 \mathrm{kips}(3327 \mathrm{kN})$. Excluding the 0.1 B settlement method, which is not applicable, and $1.0-\mathrm{in}(25.4 \mathrm{~mm})$ settlement, which is clearly beyond the failure, the average of all the criteria led to a final static resistance assessment of $\mathbf{R}_{\mathrm{s}}=773 \mathrm{kips}$ (3438 kN).

5.2.2 Dynamic Measurements Analysis

The analyses performed on piles in data set PD/LT employed office analysis (i.e., CAPWAP or TEPWAP) as well as several computer programs developed to process and manage force and velocity signals, including DIGITIZE, PDAP, INTEGRATE, and FILECHNG.

The dynamic analyses were performed in different ways depending on the completeness of each pile case. In all cases, the pile geometry (i.e.. type, material, length of

Figure 12. Load-settlement data plotted on a logarithmic graph for pile-case 50 to determine the failure load according to DeBeer's method.
penetration, the soil at the pile's tip and side, and the blow count) was known before any type of analysis was initiated. The individual cases were divided into three distinct groups:
(a) Group 1 - pile cases with complete CAPWAP summaries, including $\mathrm{E}_{\text {max }}, \mathrm{D}_{\max }, \mathrm{F} 1$, and V1.
(b) Group 2 pile cases with incomplete CAPWAP summaries, such as those missing $\mathrm{E}_{\text {max }}, \mathrm{D}_{\text {max }} \mathrm{F}$, and/or V1.
(c) Group 3 - pile cases that were analyzed using TEPWAP.

(a) GROUP 1 - Complete CAPWAP Analyses

Pile group 1 contains the complete cases available in data set PD/LT. The most common adjustment necessary for the pile cases in this group was a ratio correction between the force at impact (F1) and the velocity at impact (V1). Theoretically, the force and velocity multiplied by the pile impedance are identical under a passing disturbance, as long as no other external forces act. The ratio between these values is:

where \quad| $\mathrm{E}=$ modulus of elasticity of the pile material |
| :--- |
| $\mathrm{A}=$ cross-sectional area of the pile |
| $\mathrm{C}=$ wave speed of the pile |

and should be equal to unity. An acceptable ratio was considered to be 1.0 ± 0.1. Beyond this ratio, a linear multiplier was applied to either or both parameters (force, velocity, or both) and to their byproducts, e.g., displacement and energy. The ratio between force and velocity may also be influenced by the precompression of a diesel hammer and hammer misalignment.

Precompression in a diesel hammer occurs as the air-fuel mixture is compressed by the ram just prior to combustion. This results in a force that is applied to the pile top. However, as the force is applied relatively slowly and before the actual impact between the ram and the pile top, there is not a corresponding velocity wave. This scenario results in a discrepancy between the impact force (F 1) and the impact velocity (V1(EA/C)), as shown in figure 13. The force and velocity traces of pile-case 1, driven with a Delmag 30 diesel hammer, are shown in figure 13. The observed relations indicate the need for a force reduction ($\Delta_{\text {total }}$), which is equal to the difference between $\Delta \mathrm{pk}$ and $\Delta \mathrm{ps}$. Prior to a correction, the ratio (V1(EA/C)/F1) for pile-case 1 was 0.874 . The factor ($\Delta_{\text {total }}$) represents the number of units by which the force must be reduced in order to produce an acceptable ratio according to equation 28. The magnitude of $\Delta_{\text {total }}$ and the reduction of F1 are performed as follows:

$$
\begin{equation*}
\Delta_{\text {total }}=\Delta_{p k}-\Delta_{p s}=2 \text { units }=\succ \frac{2 \text { units }}{38.5 \text { units }} \times 250 \mathrm{kips}=13 \mathrm{kips}(58 \mathrm{kN}) \tag{28}
\end{equation*}
$$

Figure 13. Force and velocity (V*EA/C) traces of pile-case 1, a steel HP12x74 that needed a force correction (not to scale).

$$
\begin{equation*}
F 1=F 1_{\text {uscarrectad }}-\Delta_{\text {tocal }}=335.4 \mathrm{kips}-13 \mathrm{kips}=F 1_{\text {corrected }}=322.4 \mathrm{kips}(1434 \mathrm{kN}) \tag{29}
\end{equation*}
$$

The corrected F1 yields a new V1(EA/C)/F1 ratio, an adjusted $\mathrm{E}_{\text {max }}$, and a corresponding uncorrected Energy Approach prediction $\left(\mathrm{R}_{\mathrm{u}}\right)$ as follows:

$$
\begin{gather*}
\frac{V 1\left(\frac{E A}{C}\right)}{F 1_{\text {corrected }}}=0.909 \tag{30}\\
E_{\max }=18 \mathrm{kip}-f t \times \frac{322.4 \mathrm{kips}}{335.4 \mathrm{kips}}=17.3 \mathrm{kip}-f \mathrm{ft} \Rightarrow R_{\mathrm{u}}=362 \mathrm{kips}(1610 \mathrm{kN}) \tag{31}
\end{gather*}
$$

The procedure for correcting F1 is also performed in a similar manner for adjusting V1 and the corresponding $\mathrm{D}_{\text {max }}$, where $\mathrm{D}_{\text {max }}=\int \mathrm{V}(\mathrm{t}) \mathrm{dt}$. This is sometimes necessary when
either there is a significant hammer-pile misalignment that creates disturbance in the force and velocity measurements or there is a discrepancy in the measurement itself. The correction procedure for decreasing $\mathrm{V} 1(\mathrm{EA} / \mathrm{C})$ also uses the factor $\Delta_{\text {total }}$ as determined by the discrepancy in the F1 and V1(EA/C) measurements where $\Delta_{\text {total }}$ is converted to units of force. Similarly, V1(EA/C) is decreased by:

$$
\begin{equation*}
V 1\left(\frac{E A}{C}\right)_{\text {corrected }}=V 1\left(\frac{E A}{C}\right)_{\text {uncorrected }}-\Delta_{\text {total }} \tag{32}
\end{equation*}
$$

producing a corrected ratio:

$$
\begin{equation*}
\frac{\left(V 1 \frac{E A}{C}\right)_{\text {corrected }}}{F 1} \tag{33}
\end{equation*}
$$

and an adjusted $\mathrm{D}_{\text {max }}$:

$$
\begin{equation*}
D \max _{\text {corrected }}=\int V I_{\text {corrected }} d t \tag{34}
\end{equation*}
$$

The corresponding uncorrected Energy Approach prediction is calculated using the adjusted $D_{\text {max }}$ as follows:

$$
\begin{equation*}
R u=\frac{E \max }{S e t+\frac{D \max _{\text {correcied }}-S e t}{2}} \tag{35}
\end{equation*}
$$

(see chapter 4 for Energy Approach details). It should be noted that it is sometimes necessary to correct both the force and the velocity measurements given the proper circumstances. In general, very few pile-cases required correction, the majority of which needed very small adjustments. These corrections usually had an insignificant effect on the obtained J_{c} and Ru values.

After the static load test analysis and the dynamic analysis were completed, the Case damping coefficient (\mathbf{J}_{c}) was back-calculated using equation 6 as outlined by Goble et al. (1980).

(b) GROUP 2 - Incomplete CAPWAP Analyses

The pile eases categorized in group 2 include piles from data set PD/LT that were analyzed via CAPWAP. Difficulties associated with retrieving and accumulating complete pile data cause pile cases to require more analysis in order to produce missing information essential for the study. Typical information missing from pile cases included $\mathrm{E}_{\max }$ (the maximum energy delivered to the pile top) and $\mathrm{D}_{\text {max }}$ (the maximum displacement of the pile top). A typical pile case in group 2 includes a static load test plot, subsurface site information, blow count records, and CAPWAP predictions at EOD,

BOR, and/or EOR, excluding the CAPWAP summary tables. The CAPWAP summary tables include pile characteristics, Case method predictions and crucial dynamic measurements ($\mathrm{V}_{\max }, \mathrm{V}_{\text {fin }}, \mathrm{V} 1^{*} \mathrm{Z}, \mathrm{F} 1, \mathrm{~F}_{\max }, \mathrm{D}_{\max }, \mathrm{D}_{\text {fin }}, \mathrm{E}_{\text {max }}$, and $\mathrm{E}_{\text {fin }}$). In order to determine these missing dynamic parameters, a program was developed at UMASSLowell called INTEGRATE (written by L. Chernauskas). This program was specifically developed to calculate the uncorrected Energy Approach and the Case method similar to a more extensive and versatile program called PDAP (Pile Driving Analysis Program), which was developed by Paikowsky (1984). The program PDAP uses recorded field data from the PDA, enables it's manipulation and correction, and produces an Energy Approach prediction and a range of Case method predictions based on all the different variations for different J_{c} values.

INTEGRATE processes digitized force and velocity ($V^{*} E A / C$) traces (see figure 14 for example) and, using the pile parameters as given by the user, produces the dynamic measurements listed above. INTEGRATE also calculates the uncorrected Energy Approach prediction and back-calculates the Case damping coefficient (J_{c}) using the following relationship:

$$
\begin{equation*}
J_{c}=\frac{R T L-F I N A L R s}{V I * \frac{E A}{C}-F I-R T L} \tag{36}
\end{equation*}
$$

Figure 14. Digitized force and velocity multiplied by the impedance (EA/C) traces for pile-case 192 used for input into INTEGRATE.

UMASS-LOWELL GEOTECHNICAL ENGINEERING DYNAMIC PILE TESTING

FILE..	33P1BOR
Pile location.	SITE 33
DATE OF ANALYSIS.	2-10-92
PILE DESIGNATION.	33P1-BOR
PILE TYPE.	HP12x74
HAMMER TYPE	B-400
NOMINAL ENERGY OF HAMMER (tr-kips)..................	46
PENETRATION DEPTH (tt).	114.4
2L/C (msecs).	14.39
TIME INTERVAL (msecs).	. 1
PILE IMPEDANCE - EA/C (kip/sec/ft)	38.9
FINAL BLOW COUNT (bl/in)..............................	
T2 (oftset from T1) (msecs)....................................	14.39
SUMMARY OF OUTPUT PARAMETERS	
dmax	0.787
DFIN.	0.164
HAMMER EFFICIENCY (\%).	69.14
EMAX (kip-tt)...	31.80
EFIN (kip.tt)...	25.55
VMAX ($\mathrm{t} / \mathrm{sec}$)	15.78
VFIN (t/sec)..	0.420
FMAX (kips).	637.38
FFIN (kips).	42.02
J......	-0.017
F1 (kips).	637.38
F2 (kips)..	192.10
V1 (th/sec).	15.78
V2 ($\mathrm{H} / \mathrm{sec}$)	-3.59
(V1*EA/C)/F1	0.963
PILE CAPACITY (kips)	
DAVISSON'S CRITERIA.	800
SHAPE OF CURVE	800
$\Delta=.1 \mathrm{~B}$...	598
$\Delta=1 \mathrm{inch}$.	522
DEBEERS LOG METHOD.	800
FINAL $\mathrm{R}_{\text {S }}$	800
CASE RTL	792
CAPWAP.	715
ENERGY APPROACH F_{U} (uncorrected).	898

Figure 15. INTEGRATE output of pile-case 192 showing the back-calculated Case J_{c} value and the Energy Approach prediction.
(Goble et al, 1980). The static load test results are denoted FINAL R $_{8}$, and must be supplied by the user. An example of the results of an INTEGRATE analysis of the force and velocity traces shown in figure 14 for pile-case 192 (33P1BOR) is shown in figure 15. After reviewing the force and velocity (EA/C) traces for a given pile case and the (V1*EA/C)/F1 ratio, calculated by INTEGRATE, any necessary corrections and corresponding adjustments to $\mathrm{E}_{\max }$ and $\mathrm{D}_{\max }$ can be made, as outlined in section 5.5.2(a); and the uncorrected Energy Approach calculations can be performed.

(c) GROUP 3 - TEPWAP Analyses

Several pile cases in data set PD/LT were lacking the CAPWAP office analysis and, therefore, required wave match analysis to be performed. These pile cases were categorized in group 3 and all of them were analyzed using a computer program called TEPWAP. TEPWAP (Paikowsky, 1982; Paikowsky and Whitman, 1990; and Chernauskas, 1993) utilizes a procedure somewhat similar to the CAPWAP analysis described by Goble et al. (1970). This program allows the input of the measured velocity at the pile top as a function of time, solving for a set of parameters describing the soil resistance (dynamic and static) along the pile (see section 3.3.3). Adjustments of the matches are made until the calculated force at the top matches that measured. A good agreement between CAPWAP and TEPWAP analyses was presented by Paikowsky (1982) and further confirmed by Chernauskas (1993).

The pile cases in group 3 were initially analyzed in the same manner as those in group 2, whereby their force and velocity traces were digitized with respect to time using the program DIGITIZE and processed using INTEGRATE. After these steps were successfully completed, three data files were created for each case: an input file, an identification file, and a pile/soil file. An input file for TEPWAP is created using the program DIGPWAPE that processes digitized force and velocity traces and prepares them in the same manner as the PDA. Figures 16 and 17 show the identification file and the pile/soil file for pile-case 191, respectively. These files, along with the digitized force and velocity traces (see figure 18 for example), are necessary for TEPWAP analyses. Iterations are performed, where the user is required to adjust the soil properties (i.e., side and tip damping and quake, and side and tip resistance) until an acceptable force wave match is made. Figure 19 presents the comparison between the calculated force at the top (obtained from the above procedure) to the measured force at the top of pile-case 191.

This particular pile case appears to be exhibiting pile plugging near the tip as indicated by the sudden observed force "jump" near 2L/C and again near 4L/C. Pile plugging is most commonly associated with open-pipe piles or H-piles. It usually refers to the phenomenon that occurs when soil enters the open-pipe pile during driving until the inner-soil cylinder develops sufficient resistance to prevent further soil intrusion (see Paikowsky et al, 1989; Paikowsky and Whitman, 1990). The development of friction along the web of an H-pile can also develop enough resistance to prevent soil intrusion, causing the H -pile to become "plugged." When an H-pile becomes plugged, it then

UNIVERSITY OF MASSACHUSETTS - LOWELL GEOTECHNICAL ENGINEERING TEPWAP ANALYSIS

 IDENTIFICATION DATA

JOB NUMBER. TP1EOD
JOB NAME 33 P
DATE OF DRIVING. 10-28-77
PILE DESIGNATION H
TYPE OF PILE. HP 12×74
PILE LENGTH (ft.) 121
TYPE OF HAMMER B-400
NOMINAL ENERGY OF HAMMER (kips* t) 46
DEPTH OF PENETRATION (tt.) 114.4
ELEMENT LENGTH (ft.) 5.26
DAMPING MODEL SMITH
NUMBER OF BLOWS PER LAST THREE INCHES. 13, 13, 12
DATE OF ANALYSIS. 9-16-92
PDA BLOW \# 2
ITERATION 1
TIME INTERVAL 0.200
OPTION NUMBER 2

Figure 16. Example of the pile identification information of pile-case 191 used as input for the TEPWAP analysis.

3	UNIVERSITY OF MASSACHUSETTS - LOWELL GEOTECHNICAL ENGINEERING TEPWAP ANALYSIS SOIL AND PILE PROPERTIES ALONG PILE ELEMENTS									
element no.	dist from gauges (fi)	area (s्q.In)	weight (lbs.)	stiffr (m / in)	resist (kips)	sum of tesist (kips)	damp (s / m)	quake (in.)	quake rebnd ratio (\%)	upwrd resist ratio (\%)
3	5.3	21.8	300.1	10364	0.0	439.0	. 000	0.000	0.0	0.0
4	10.5	21.8	380.1	10384	5.0	434.0	. 020	0.300	100.0	. 50.0
5	15.8	21.8	390.1	10364	5.0	429.0	. 020	0.300	100.0	50.0
8	21.0	21.8	390.1	10384	3.0	424.0	020	0.300	1000	-50.0
7	20.3	21.8	390.1	10384	5.0	419.0	. 020	0.300	100.0	. 50.0
8	31.8	21.8	390.1	10364	5.0	414.0	. 020	0.300	100.0	-50.0
9	30.8	21.8	350.1	10364	0.0	414.0	. 010	0.300	100.0	. 50.0
10	42.1	21.8	390.1	10364	0.0	414.0	.010	0.300	100.0	. 50.0
11	47.3	21.8	350.9	10364	20	414.0	010	0.300	100.0	. 50.0
12	52.0	21.8	380.1	10384	0.0	414.0	010	0.300	${ }^{+\infty} 0$	-50.0
13	57.9	21.8	390.1	10364	0.0	414.0	. 010	0.300	100.0	50.0
14	63.1	21.8	390.1	10384	5.0	409.0	. 010	0.300	100.0	. 50.0
15	68.4	21.8	390.1	10364	5.0	404.0	. 010	0.300	100.0	. 50.0
16	73.8	21.8	350.1	10304	8.0	396.0	. 010	0.300	100.0	. 50.0
17	78.9	21.8	390.1	10364	80	388.0	.010	0.300	100.0	. 50.0
18	84.2	21.8	390.1	10364	8.0	380.0	. 010	0.300	100.0	. 50.0
19	88.4	21.8	390.1	10364	8.0	372.0	.010	0.300	100.0	-50.0
20	94.7	21.8	390.1	10364	8.0	384.0	.010	0.300	100.0	-50.0
21	99.8	21.8	390.1	10384	8.0	356.0	. 010	0.300	100.0	-50.0
22	108.2	21.8	380.1	10364	8.0	348.0	.010	0.300	100.0	-50.0
23	110.5	21.8	300.1	10364	8.0	340.0	. 010	0.300	100.0	-50.0
24	115.7	21.8	390.1	10364	80.0	2600	. 090	0.150	100.0	-50.0
25	121.0	21.8	300.1	0	100.0	160.0	. 080	0.150	100.0	-50.0
Up					160.0	00	. 080	0.150	100.0	

Figure 17. Example of the soil and pile properties used along the pile elements of pile-case 191 as input for the TEPWAP analysis.

Figure 18. Measured force and velocity multiplied by the impedance (EA/C) traces of pile-case 191 used by the TEPWAP analysis.

Figure 19. Comparison between measured force near the top of pile-case 191 and the calculated force from TEPWAP analysis.

Figure 20. Summary of the final results from TEPWAP analysis performed on pile-case 191.
assumes the penetration characteristics of a large displacement pile (i.e., with a closed rectangular tip). Pile plugging is shown to have the following marked effects: significant contribution to the capacity of piles driven in sand; delay in capacity gain with time for piles driven in clay; and changes in the behavior of piles during installation, causing it to differ from that described by the models commonly used to predict and analyze pile driving (Paikowsky and Whitman, 1990). Further investigation into pile-case 191 shows that the H-pile is embedded over $114 \mathrm{ft}(35 \mathrm{~m})$ into silty sand. These conditions are ideal for pile plugging to occur and, therefore, plugging can be attributed to the force match disagreement at $2 \mathrm{~L} / \mathrm{C}$ and again at $4 \mathrm{~L} / \mathrm{C}$ by TEPWAP as shown in figure 14.

The final summary of results from TEPWAP analyses are produced for each case (see figure 20 for example). These summaries allow the user to investigate the compressive and tensile stresses developed in the pile during driving (e.g., concrete piles) as well as the side and tip resistance and the measured and calculated energy delivered to the pile.

All of the pile cases that were analyzed using TEPWAP are footnoted in the data set tables in chapter 6. The Case damping coefficients for these cases were calculated as part of the INTEGRATE output as previously stated.

5.3 DATA SET PD

Data set PD contains information related to 403 piles; the vast majority were sorted from information related to 428 piles provided by Pile Dynamics, Inc. of Cleveland, Ohio, as part of their support of the Energy Approach method research. Large portions of the PD data set analysis were performed by McDonnell (1991). The data set contains the following information:

- Pile identification, which also refers to the time of measurement, e.g., end of driving (EOD) or beginning of restrike (BOR).
- Soil type on the side and at the tip of the piles.
- Pile type, geometry, material, and modulus of elasticity.
- Hammer type and blow count.
- Resistance obtained by CAPWAP analysis.
- All parameters pertinent to the CAPWAP analysis, e.g., damping factors and quake values.
- Maximum energy, force, velocity, and displacement of the analyzed blow.
- Resistance obtained from different Case method evaluations.

The data set is subgrouped according to pile and soil types, as shown in table 3.

Table 3. Subgrouping of the piles in data set PD (indicating the number of piles in each group).

Pile Type/Soil Type	Sand and Silt	Clay and Till	Rock	N/A*	Total
Small Displacement	26	21	29	-	76
Large Displacement	92	50	78	22	242
Miscellaneous"	40	21	19	5	85
Total					
- Soil type not available.					
- Miscellaneous piles include timber, monotube, pipe with H beams, etc.					

The large size of data set PD provides an excellent basis for the examination of any possible parameter relations. The complete summarized data set is presented in table 24. Correlations between the Energy Approach vs. CAPWAP predictions for the various pile/soil combinations shown in table 3 are presented in chapter 9. The total number of correlations is 15 (see table 3 for number of cases in each category).

CHAPTER 6 - DATA SET PD/LT

6.1 GENERAL

This chapter summarizes the pile cases in data set PD/LT. Four tables are used to group the information into four categories (see appendix A). The groups are as follows: site and pile information (table 20), pile driving and dynamic measurements (table 21), parameters of dynamic analyses (table 22), and pile capacity based on static load test results and dynamic analyses (table 23). The following sections discuss the breakdown of these tables and provide:

- Details of where the information was gathered for each column.
- Methods used to produce the information.
- Definitions of any symbolism used.

For a list of references and contributors to data set PD/LT, see section 1.3.

6.2 SITE AND PILE INFORMATION - TABLE 20

(a) Columns 1.4

The first four columns of table 20 list the case number for each case in data set PD/LT (208 total), the pile-case number, the site reference number, and the site location, respectively. A number is assigned to each pile-case in column 1 for all four tables to provide easier transition from one table to another. The next column lists the pile-case number that corresponds to the pile number as labeled in individual site plans and reports. Included in the pile-case numbers are extensions that designate the time of driving when measurements were taken (e.g., EOD $=$ end of driving, BOR = beginning of restrike, $\mathrm{EOR}=$ end of restrike, $\mathrm{DD}=$ during driving, and $\mathrm{BORL}=\mathrm{BOR}$ after load test). A reference number is assigned to each pile-case depending on which project the particular pile was driven and the location column lists the general area where the driving site is located (e.g., county, state, province, or country).

(b) Columns 5-8

The next four columns of table 20 provide pile information, including the pile geomerry and the depth to which the pile was driven at the time of analysis. Column 5 briefly lists the pile type according to its material and its cross-sectional dimensions. For example, the notation HP, CEP or CP, and OEP represent a steel H-pile, a steel closed-end pipe pile, and a steel open-end pipe pile, respectively, whereas PSC, VC, and RC represent a pre-stressed concrete pile, voided concrete pile, and simply reinforced-concrete pile. Any
timber piles listed refer to those that were treated prior to driving. Following the pile type notations are the dimensions of the pile. For the closed-end and open-end pipe piles, the wall thickness dimensions can be back-calculated from the piles cross-sectional area listed in column 6. Typically, the pile length below gauges and its penetration depth, shown in columns 7 and 8, were taken from the field driving records (when available) as reported by the field engineer. Many times, the length below gauges is reported as a general value for several piles at one site (e.g., length below gauges $=$ pile length $-3 \mathrm{ft}[0.91 \mathrm{~m}]$). There are some cases in which there is no indication as to exact lengths and, instead of assuming the field conditions, the length below gauges according to the CAPWAP results is used.
(c) Columns 9 and 10

The soil type at the side and tip of each pile-case are listed in the final two columns of table 20. This information is obtained from subsurface investigation reports and boring logs and it is considered essential to all pile-cases in data set PD/LT. The soil descriptions listed under side and tip are generalized according to the basic nature of the soil. For example, a pile that is reported to have a sandy silt with traces of clay is listed as sandy-silt. Also, soil types listed in the following manner, cl-sa-silt, for instance, refer to a clayey sandy silt with the most predominant soil listed at the end of the classification. Several abbreviations are used to condense the soil descriptions, these include: sa = sand, si= silt, $\mathrm{cl}=$ clay, ti = till, gr = gravel, d. = dense, l. = loose, clcr = calcareous, and carb = carbonious.

6.3 PILE DRIVING AND DYNAMIC MEASUREMENTS - TABLE 21

The pile driving and dynamic measurements information of each pile-case are summarized in table 21.

(a) Columns 1 and 2

In accordance with table 20, the first and second columns in this table list the case number and the pile-case number of each pile-case.

(b) Columns 3-5

The following three columns provide relevant hammer information for each case, such as the hammer type, the rated hammer energy, and the maximum energy delivered to the pile top. The letter abbreviations used denote the manufacturers name, for instance: $\mathrm{B}=$ Bermingham, $\mathrm{D}=$ Delmag, $\mathrm{K}=\mathrm{KC}=$ Kobelco, $\mathrm{Con}=\mathrm{CN}=$ Conmaco, $\mathrm{LB}=$ Link Belt, ICE = International Construction Equipment, $\mathrm{KB}=$ Kobe, Vul = Vulcan, $\mathrm{M}=\mathrm{MH}=$ Mitsubishi, and $\mathrm{DE}=$ MKT. The abbreviations are followed by the model size (i.e., B-400 refers to a Bermingham 400 diesel hammer). The rated hammer energies are shown according to the manufacturers recommendations. The energy delivered refers to the maximum delivered energy, which is based on the dynamic measurements
and was usually determined from office analyses (i.e., CAPWAP/TEPWAP). It should be noted that often some discrepancy exists between the measured energy in the field as calculated by the PDA to the one reported by CAPWAP. This may be a result of several reasons:

- "Correction" of the waves for better proportionality before carrying out the office analysis.
- Older PDA models require the storage of data in an analog form on magnetic tapes. The data retrieval in those cases always contains some error.
- Field analysis may provide an average value while the office analysis refers to one particular blow. For reasons of consistency, whenever possible, the delivered energy value refers to the one reported by CAPWAP as the maximum energy ($\mathrm{E}_{\text {max }}$).
(c) Column 6

The blow count (reported in blows per inch, BPI) is listed in the sixth column of table 21. Several times the blow count records were only in blows per foot and it was, therefore, necessary to convert these values to blows per inch. This conveniently allows the pile set to be derived in units of inches (set = 1 /blows per inch). An asterisk follows each blow count that was converted from blows per foot to blows per inch.
(d) Columns 7-10

Following the blow count is the pile impedance, velocity at impact ($\mathrm{V}_{\mathrm{imp}}$), force at impact ($\mathrm{F}_{\mathrm{imp}}$), the ratio [(V1*EA/C)/F1], and the maximum pile displacement ($\mathrm{D}_{\max }$). As mentioned in chapter 5 , the pile impedance is used to examine the ratio between the velocity and the force waves. The impedance is calculated using:

$$
\begin{equation*}
\frac{E A}{C} \tag{37}
\end{equation*}
$$

where $\quad \mathrm{E}=$ modulus of elasticity of the pile material at the point of measurement
$A=$ cross-sectional area of the pile at the point of measurement
$C=$ wave speed of the pile.
The impedance is reported in kips per foot per second. The velocity at impact, $\mathrm{V}_{\text {imp }}$ $(\mathrm{ft} / \mathrm{s})$; the force at impact, $\mathrm{F}_{\text {imp }}$ (kips); and the maximum displacement of the pile, $\mathrm{D}_{\max }$ (in), are obtained from dynamic measurements (see chapter 4). These values were typically taken from CAPWAP summaries and/or INTEGRATE results. The ratios between velocity and force [(V1*EA/C)/F1], reported in table 21, were those corrected when necessary, as discussed in chapter 5.

6.4 PARAMETERS OF DYNAMIC ANALYSES - TABLE 22

The parameters associated with dynamic analyses (i.e., quake and damping) are listed in table 22.
(a) Columns 1 and 2

The first two columns of table 22 list the case numbers and pile-case reference numbers consistent with tables 20 and 21 .

(b) Column 3

The Case damping coefficient (J_{c}) reported in column 3 was back-calculated using the static load test results (R_{s}) as the "predicted capacity" for each particular pile and the "standard form" of the Case method utilizing equation 36.
(c) Columns 4 and 5

Columns 4 and 5 present the pile impedance and the calculated $2 \mathrm{~L} / \mathrm{C}$, respectively. The magnitude $2 \mathrm{~L} / \mathrm{C}$ is the time that it takes for a wave to reach the pile tip and reflect back to the pile top. This term is reported in milliseconds; L represents the pile length below gauges (feet) and C represents the wave speed of the pile material (feet per second).
(d) Columns 6-9

The last four columns list the tip and side quake and the tip and side damping, respectively. These values are used as input into CAPWAP or TEPWAP analyses and were obtained from their summaries. Those values that were used in TEPWAP analyses are denoted with an asterisk. The quake values are reported in inches and the damping is reported in units of seconds/feet.

6.5 PILE CAPACITY: STATIC TESTS AND DYNAMIC ANALYSES - TABLE 23

The static load test results for each pile in data set PD/LT were analyzed using five different failure load interpretation procedures: Davisson's Criteria, Shape-of-Curve method, the Limited Total Settlement methods ($\Delta=1$ inch and $\Delta=0.1 B$), and DeBeer's method. These procedures are discussed in detail in chapter 5.

(a) Columns 1-3

The case number, pile-case reference number, and load test type are listed in the first three columns. The load test types have been abbreviated: $\mathrm{S}=$ standard, $\mathrm{Q}=$ quick, $\mathrm{SM}=$ slow maintained, $\mathrm{LLT}=$ Louisiana load test, $\mathrm{FQ}=$ Florida modified quick, and CRP $=$ constant rate of penetration.

(b) Columns 4-8

Following the load test type column are the five load test interpretation methods used (all results are given in kips). The abbreviation NA refers to methods that were not applicable.
(c) Column 9

The static resistance $\left(\mathrm{R}_{\mathrm{s}}\right)$ represents the average of the resistances given by the five methods (see chapter 5 for discussion).

(d) Columns 10-12

The last three columns report the capacity predictions from CAPWAP or TEPWAP, the Energy Approach, and the Energy Approach correction factor (K_{sp}). The predictions based on TEPWAP analyses are denoted with an asterisk. The CAPWAP/TEPWAP and Energy Approach predictions are reported in kips.

CHAPTER 7 - DATA SET PD

7.1 PILE/SOIL AND DYNAMIC MEASUREMENTS OF DATA SET PD - TABLE 24

The information of data set PD was provided by Pile Dynamics, Inc. of Cleveland, Ohio, as part of their support of the Energy Approach method research. Table 24 in appendix B summarizes the information describing the pile geometry, skin and toe soil, and dynamic measurements of the piles comprising data set PD (403 in all). Initially, this data set consisted of 428 pile-cases, however, 25 cases were removed because they were either duplicates or they were missing information. Table 24 categorizes the PD pilecases according to pile type and soil type. A summary of these categories is presented in table 3. The correlations between the Energy Approach and CAPWAP are presented in chapter 9 .

(a) Columns 1 and 2

The first two columns in table 24 list the reference number and the pile name according to designations made by Pile Dynamics, Inc.

(b) Columns 3 and 4

The side and toe soil are abbreviated in a similar manner to table 20, however, there are several additional soil types included: alluv=alluvial, clayston=claystone, coopermar = coopermarl, limestn = limestone, sastone = sandstone, overburd = overburden, dolom = dolomite, cobbl = cobbles, til = till, tilall = alluvial till, and sigr = silty gravel.

(c) Columns 5-9

The pile type and geometry are given in column 5 and are abbreviated in a similar fashion to table 20. The length below gauges, cross-sectional area, and modulus of elasticity are listed in columns 6,7 , and 8 , respectively, and their units are as shown. Hammer type is listed in column 9 and abbreviations are consistent with those in table 20. Additional abbreviations include RAY $=$ Raymond and IHC $=I H C$ Hydrohammer.
(d) Columns 10-14

The dynamic measurements are reported in columns 10 through 13 and are listed as follows: FMX = maximum force at the pile top (kips), EMX = maximum energy delivered to the pile (kip-ft), VMX = maximum velocity at the pile top (ft / s), and $\mathrm{DMX}=$ the maximum displacement of the pile top (in). Column 14 contains the blow count for each pile-case reported in blows per inch.

(e) Columns 15 and 16

The last two columns list the CAPWAP predictions (in kips) and the corresponding Energy Approach predictions (in kips) for each pile-case, respectively.

7.2 SIDE/TIP QUAKE AND DAMPING PARAMETERS OF DATA SET PD - TABLE 25

Table 25 in appendix B summarizes the quake and damping parameters used for both the side and tip of each PD pile-case. The first five columns are identical to table 24 , however, the pile-cases are listed in ascending order according to the reference numbers in column 1.
(a) Columns 6 and 7

The quake parameters used for the side and tip soil are listed in columns 6 and 7, respectively. These values are reported in inches.

(b) Columns 8 and 9

The last two columns of table 25 list the damping parameters used for the side and tip soil of each pile-case (reported in seconds per foot).

CHAPTER 8 - ANALYSIS OF DATA SET PD/LT

8.1 OVERVIEW

8.1.1 Purpose

The aim of this chapter is to present the analysis of the pile-cases in data set PD/LT in two forms by using:

- Graphical correlations, e.g., between static load test results and dynamic predictions (i.e., CAPWAP/TEPWAP and the Energy Approach), considering different factors such as pile and soil type, time of driving, and driving resistance.
- Statistical analyses in combination with the graphical correlations in order to establish conclusions and recommendations.

8.1.2 Outline

Three different types of correlations were investigated for the pile cases of data set PD/LT. The three categories and their rationales are presented below.
(a) Damping Parameters-Soil Type Correlations

One of the basic concepts presented in this research is that the different damping parameters fulfill the need for absorbing energy rather than truly representing either the soil or the physical phenomena it is subjected to. As such, correlations were built between the different damping parameters (Smith side and tip and the Case damping) and soil type, in order to examine the existence or nonexistence of such relations. The correlations of this category are presented in section 8.2.

(b) Prediction Methods-Load Test Capacity

Three dynamic analysis methods are examined throughout this research: (1) the office analyses (CAPWAP/TEPWAP), the field analysis (the Case method), and the proposed Energy Approach. Correlations were built between the predictions of CAPWAP/TEPWAP analysis and the Energy Approach analysis to the actual capacity based on the load test results. No correlations were built between the Case method predictions and the load test results, due to the following reasons:

- The method has a variety of shapes in which it can be implemented (see section 3.5), hence, no "unique" value would be valid.
- Previous studies (see section 3.5.5) suggested limited accuracy.
- The method is based on the notion of an existing correlation between the J_{c} damping parameter and the soil type at the tip. This was proven not to exist in the correlations described in group (a) above (see section 8.1.2).

In order to examine the influence of different factors (e.g., pile shape, driving resistance, time of driving, soil type, etc.), these correlations were built from the most generic cases (e.g., CAPWAP vs. load test results for all piles) to the private cases (e.g., CAPWAP predictions vs. load test results for small displacement piles in sand).

The correlations of this category are presented in sections 8.3.2 and 8.3.3 for different pile and soil types and in section 8.3 .4 for different driving times. Their statistical analyses and interpretations are presented in section 8.4.

(c) Office Method/Field Method Predictions

Data set PD/LT contains information that is difficult to obtain. In general, very few load tests are carried out and, of those, only a small portion are carried out to failure. A considerably smaller portion is monitored dynamically during driving. As such, a strong correlation between the dynamic methods themselves may prove beneficial where load test data is not available. Correlations between the different predictions can therefore be compared to those obtained for data set PD for which static resistance is not available. These correlations are presented as part of sections 8.3 through 8.6 and are compared to those of data set PD in chapter 9.

8.2 DAMPING PARAMETERS AND SOIL TYPE GRAPHICAL CORRELATIONS

As previously discussed in chapter 4, viscous damping accounts practically for different energy losses, including radiation, soil inertia, and viscosity in cohesive soils. The damping parameters and their calibrations based on soil type have therefore been questioned.

8.2.1 Case Method Damping

The Case damping coefficient $\left(\mathrm{J}_{\mathrm{c}}\right)$ is based on viscous damping in a dimensionless form, and is assumed to be related to the soil type at the pile's tip. Figure 21 presents the back-calculated Case damping coefficients for data set PD/LT vs. soil type at the pile tip. J_{c} was calibrated using the static capacity R_{s} and the "standard" Case method, as outlined by Goble et al. (1975) (see equations 6 and 36). It is shown that for the 208 pile-cases reported, no specific correlation exists between the soil type and the damping coefficient. Moreover, the obtained negative damping coefficients have no physical meaning and should be reviewed only for the purpose of illustrating the limitations of the J_{c} coefficient.

8.2.2 Smith Damping

Figures 22 and 23 compare the Smith damping coefficients (side and tip) used by CAPWAP/TEPWAP to the soil type at the side and tip of the pile, respectively. Corrections were not made to the office analysis, hence, the capacities obtained by the presented analysis reflect the predicted capacity and not the actual static capacity. A large variation of the damping parameter values can be observed for each soil type. Consequently, no specific correlation was made between the damping coefficients and soil type. These relations are further examined for the pile-cases of data set PD in chapter 9 and for all combined cases (581) in chapter 10.

8.3 DYNAMIC PREDICTION-STATIC CAPACITY GRAPHICAL CORRELATIONS

8.3.1 Correlations Breakdown

The graphical relationships between CAPWAP/TEPWAP and the Energy Approach to the static load test results were produced for all PD/LT pile-cases. These relationships are shown in the form of scatter plots (scattergrams). These plots were necessary as no statistical analysis can provide the actual observed information. The scatter plots were further divided into subgroups based on:

- Pile type (i.e., large and small displacement), presented in section 8.3.2.
- \quad Soil type at the pile tip, presented in section 8.3.3.
- Time of driving (i.e., $\mathrm{EOD}=$ end of driving, $\mathrm{BOR}=$ beginning of restrike), presented in section 8.3.4.

The scatter plots for each different subgroup are shown in a consistent order: (1) static load test vs. CAPWAP/TEPWAP predictions, (2) static load test vs. Energy Approach predictions, and (3) CAPWAP/TEPWAP predictions vs. Energy Approach predictions. A flow chart illustrating the breakdown of all cases is presented as table 4. Each correlation graph includes a first-order best-fit line through zero (shown as the solid line), the corresponding coefficient of determination (r^{2}), and a set of dashed lines representing the ratio between the actual capacity over the predicted one to allow the assessment of over- and under-predictions. For example, points falling on a dashed line labeled 0.80 designates an over-prediction, where the actual static capacity is 80 percent of the predicted capacity. It should be noted that this ratio is a direct multiplier, hence, the ratio represents the value that when multiplied by the prediction will give the "correct" capacity. This is the inverse to the ratio of the predicted over measured capacity used, for example, by Olson and Dennis (1989) or Briaud et al (1988). The

Table 4. Breakdown of all PD/LT categories.

breakdown of the best-fit line (using linear regression) for all cases is presented in tables 5,6 , and 7.

8.3.2 Pile Type Correlations

(a) All Piles

The following graphs compare static load test results, CAPWAP/TEPWAP, and the Energy Approach, based on the pile type and the soil type at the pile tip.

Figures 24, 25, and 26 present all PD/LT pile-cases in all types of soil. As indicated earlier, all relationships are shown in the following sequence:
(1) CAPWAP/TEPWAP vs. Static Capacity (figure 24).
(2) Energy Approach vs. Static Capacity (figure 25).
(3) CAPWAP/TEPWAP vs. Energy Approach (figure 26).

The information in figure 24 indicates that a large scatter exists when comparing the predicted capacity of the office analyses to the actual static capacity. The predicted capacity ranges from over-predictions of about 0.6 (predicted over actual ≈ 1.7) to a maximum under-prediction of 4.4, with most cases falling within the under-prediction ratio of 2.5 (predicted over actual ≈ 0.4). Overall, the tendency is of under-prediction, with the best-fit line (forced through zero) indicating a ratio of 1.265 .

Figure 25 also exhibits a scatter when comparing the Energy Approach predictions to the actual load test results. The predictions range from under-predictions of 1.67 (predicted over actual ≈ 0.6) to over-predictions of 0.45 , with most cases falling within the overprediction ratio of 0.50 (predicted over actual ≈ 2.0). The best-fit line indicates an overall over-prediction with a ratio of 0.839 .

It is important to note that the range of under-prediction to over-prediction of the office analyses is about twice that of the Energy Approach. The maximum over-prediction of CAPWAP is 0.57 and the under-prediction is 4.41, compared to the Energy Approach method that ranges between 0.45 and 1.74 . These numbers indicate a range of under- to over-prediction of 7.74 for the office analyses, compared to 3.88 for the Energy Approach. This important observation becomes clearer when scattergrams are built as the relationships between the ratio of the actual capacity over the predicted capacity (the slopes in figures 24 and 25) versus the predicted capacity. These relationships are presented in figures 27 and 28 (for the office method and the Energy Approach method, respectively) and clearly demonstrate the large scatter in the prediction ratios in the office methods when compared to that of the Energy Approach. The linear best-fit lines of the data in figures 27 and 28 are:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{sw}}=1.4867-0.00024 \mathrm{R}_{u} \\
& \mathrm{~K}_{\mathrm{sp}}=1.0259-0.00013 \mathrm{Q}_{u}
\end{aligned}
$$

Table 5. Linear-regression analysis of K_{bw} for selected PD/LT pile-cases.

Ksw $\boldsymbol{\sim}$ Static Load Test Results / CAPWAP or TEPWAP predictions						
PileCase Group	Number	Linear Regression				
		Best Fit			Forced through Zero	
		x-coefficient	y-intercept	r squared	x-coeticient	r squared
AAA	206	1.127	97.3	0.707	1.265	0.692
AAS	141	1.128	112.2	0.767	1.272	0.749
AAC	51	1.057	140.7	0.413	1.319	0.383
AAR	14	0.937	-14.0	0.581	0.908	0.580
AEA	97	1.065	151.7	0.779	1.248	0.740
ABA	109	1.344	-36.2	0.616	1.284	0.614
LAA	162	1.315	32.2	0.555	1.372	0.554
LAS	118	1.360	3.6	0.595	1.366	0.595
LAC	43	1.164	118.3	0.411	1.391	0.393
LEA	68	1.450	37.2	0.530	1.529	0.528
LBA	94	1.385	-48.3	0.598	1.307	0.596
SAA	44	1.074	38.8	0.934	4.108	0.932
SAS	23	1.048	138.4	0.968	1.142	0.952
SAC	8	0.854	104.8	0.688	1.021	0.653
SAR	13	0.980	-35.4	0.378	0.908	0.376
SEA	29	1.073	52.2	0.936	1.813	0.933
SBA	15	0.922	76.3	0.812	1.069	0.785

Pile-case legend: $\quad X X X \quad$ - first letter denotes pile type: $A=$ all piles, $L=$ large displacement, and $\mathrm{S}=$ small displacement.

- second letter denotes time of measurement: $A=$ anytime $E=e n d$ of driving, and $B=b e g i n n i n g$ of restrike.
- third letter denotes soil type: $A=a l l$ soils, $S=$ sand and silt, $C=$ clay and till, and $R=$ rock.

Table 6. Linear-regression analysis of K_{sp} for selected PD/LT pile-cases.

Ksp = Static Load Test Results / Energy Approach predictions						
Pile- Case Group	Number	Linear Regression				
		Best Fit			Forced through Zero	
		x-coefficient	y-intercept	r squared	x-coefficient	r squared
AAA	208	0.736	111.5	0.723	0.839	0.703
AAS	141	0.721	130.3	0.725	0.831	0.700
AAC	53	0.789	74.2	0.675	0.872	0.666
AAR	14	0.864	-18.3	0.745	0.830	0.744
AEA	98	0.791	126.6	0.830	0.900	0.804
ABA	110	0.677	111.8	0.597	0.786	0.578
LAA	164	0.668	160.8	0.579	0.832	0.534
LAS	118	0.634	184.2	0.548	0.816	0.489
LAC	45	0.784	88.4	0.669	0.882	0.656
LEA	69	0.787	145.2	0.648	0.966	0.603
LBA	95	0.669	119	0.569	0.780	0.550
SAA	44	0.816	58.2	0.920	0.856	0.916
SAS	23	0.795	129.3	0.930	0.863	0.916
SAC	8	0.767	28.1	0.713	0.804	0.711
SAR	13	0.935	-57.5	0.628	0.829	0.619
SEA	29	0.809	73.2	0.922	0.851	0.917
SBA	15	0.914	-7.1	0.737	0.902	0.737

Pile-case legend: $\quad X X X \quad$ - first letter denotes pile type: $A=$ all piles, $L=$ large displacement, and $S=$ small displacement.

- second letter denotes time of measurement: $A=a n y t i m e$ $E=e n d$ of driving, and $B=b e g i n n i n g$ of restrike.
- third letter denotes soil type: $A=a l l$ soils, $S=$ sand and silt, $C=$ clay and till, and $R=r o c k$.

Table 7. Linear-regression analysis of K_{ew} for selected PD/LT pile-cases.

K Kew = CAPWAP or TEPWAP predictions/Energy Approach predictions						
Pile- Case Group	Number	Linear Regression				
		Best Fit			Forced through Zero	
		x-coefficient	y-intercept	r squared	x-coefficient	r squared
AAA	206	0.573	73.1	0.782	0.641	0.766
AAS	141	0.592	54.3	0.810	0.637	0.802
AAC	51	0.479	121.8	0.607	0.624	0.539
AAR	14	0.720	96.8	0.783	0.901	0.730
AEA	97	0.675	26.1	0.861	0.698	0.859
ABA	109	0.424	173.6	0.693	0.593	0.553
LAA	162	0.420	163.9	0.701	0.589	0.554
LAS	118	0.415	172.1	0.732	0.586	0.571
LAC	43	0.423	150.3	0.567	0.600	0.446
LEA	68	0.406	158.7	0.611	0.612	0.407
LBA	94	0.411	181	0.670	0.581	0.549
SAA	44	0.742	32.1	0.939	0.764	0.937
SAS	23	0.751	-1.4	0.942	0.750	0.942
SAC	8	0.876	-75.3	0.986	0.779	0.971
SAR	13	0.552	189.4	0.557	0.900	0.329
SEA	29	0.736	35.4	0.940	0.757	0.939
SBA	15	0.971	-80.2	0.871	0.834	0.851

Pile-case legend: $\quad X X X \quad$ - first letter denotes pile type: $A=$ all piles, $L=$ large displacement, and $\mathrm{S}=$ small displacement.

- second letter denotes time of measurement: $A=$ anytime E=end of driving, and $B=b e g i n n i n g$ of restrike.
- third letter denotes soil type: $A=a l l$ soils, $S=$ sand and silt, $C=$ clay and till, and $R=$ rock.
in which R_{u} and Q_{u} are the predicted capacities (in kips) by the office method and the Energy Approach method, respectively. These best-fit linear-regression lines indicate that:
- Predictions are not a function of the load, although both equations indicate a reduction in the ratios (K_{sw} and K_{sp}) with the increase of the load. This increase is very small for both prediction methods.
- Average K_{sp}-value with load is 1.03 , where the average K_{sw} with load is 1.49.

A few additional general observations can be made regarding the trends shown in figures $24,25,27$, and 28 :

- No specific correlations seem to exist between accuracy in prediction and soil type.
- Small displacement piles seem to have significantly less scatter than the one observed for the large displacement piles.

The relationship between the predicted capacities of the office methods and the Energy Approach is shown in figure 26. The information demonstrates consistent correlation within the range of 1.00 to 0.40 . The best-fit line forced through zero is the ratio of 0.641 , which means that the Energy Approach predictions are about 1.56 times those of the office predictions. This ratio is close to: (1) the ratio between the mean prediction ratio of the office methods (1.367) and the Energy Approach (0.925), which leads to 1.48; and (2) the best-fit ratio of the office methods (1.265) and the Energy Approach (0.839), which leads to 1.51 .

In observing figure 26, it can also be noted that the scatter of the small displacement piles is much smaller than that of the large displacement piles. Moreover, the ratio of best fit for the small displacement is 0.764 (see figure 34) with a mean value of 0.796 (see table 5). This observation has a special meaning as it indicates that in the cases where small soil inertia takes place, both methods are in much better agreement, with the Energy Approach prediction only about 1.3 times that of the office methods.

(b) Large Displacement Piles

The relationships pertaining to large displacement piles for all soil types are shown in figures 29 through 31.

The relationship between the office analyses and the actual static capacity for large displacement piles shows significant over-predictions. The best-fit line yields an increase from 1.265 - obtained for all piles in figure 24 - to 1.370 . The prediction ratios range from 4.41 to 0.57 with most cases in the range of 2.50 to 0.80 (actual over-prediction).

This emphasizes the outlined notion that energy loss takes place mainly due to soil inertia. Hence, the signal matching techniques using viscous damping models can not correctly represent the actual mechanism and, as a result, under-predict the actual pile capacity. It can also be mentioned in this context that the best-fit line ratio for all small displacement piles (to be presented in figure 32) is 1.108 .

The information in figure 30 yields similar results to those in figure 25 , with a considerable scatter between Energy Approach predictions and actual load test results. No significant changes can be seen from figure 25 through 28 as the best-fit ratio for large displacement piles is consistent at 0.832 .

Figure 31 indicates a high correlation between the methods, similar to that presented in figure 26 with the CAPWAP/TEPWAP over Energy Approach ratio ranging from about 1.00 to 0.40 . The best-fit line through zero produced a prediction ratio of 0.589 (CAPWAP/TEPWAP over Energy Approach).
(c) Small Displacement Piles

The relationships pertaining to small displacement piles for all soil types are shown in figures 32 through 34.

The correlation between the office method predictions and the actual static capacity for small displacement piles is shown in figure 32. The general trend indicates a relatively good agreement with a best-fit line forced through zero producing a ratio of 1.108 , much closer to the desired ratio of 1.0 than that for the large displacement piles. The scatter is substantially smaller than that for the large displacement piles. The prediction ratios range from an over-prediction of about 2.5 to an under-prediction of 0.6 (actual overprediction) with the majority of data falling between 1.25 and 0.60 . While no clear trend can be seen on the basis of soil type, the capacity of all piles driven in rock seem to be over-predicted by the office method. This distinction seems to be more related to driving resistance as all of these cases present high driving resistance of over 10 BPI .

The Energy Approach predictions vs. the actual load test results for small displacement piles are presented in figure 33. The presented relationship indicates a small scatter with ratios ranging from about 1.67 to 0.60 , with the majority of the data falling between 1.10 and 0.60 . The best-fit line through zero yields a ratio of 0.856 , which is only slightly higher than the ratios in figures 25 and 30 . It should be noted that the scatter of both methods, the Energy Approach predictions in figure 33 and the office methods in figure 32, are very small when compared to that observed for the large displacement piles, as indicated by the coefficients of determination.

The information in figure 34 indicates that a distinct trend has developed between the two methods of analysis. The data shows very small scatter with ratios ranging between 1.00 and 0.60 , with the best-fit ratio through zero equal to 0.764 .

(d) Intermediate Conclusions

See tables 5 through 7 for statistical data. Different correlations have been investigated on the basis of pile type.

- A relatively large scatter appears in the predictions of both dynamic methods, the office methods and the Energy Approach, for all cases (AAA). While the office methods under-predict on the average ($\mathrm{K}_{\mathrm{sw}}=1.265$), the Energy Approach over-predicts ($\mathrm{K}_{\mathrm{sp}}=0.839$). Both scatters are reflected through:
(1) Relatively low coefficient of determination for the best-fit line through zero ($r^{2}=0.692$ and 0.703 for the office methods and the Energy Approach, respectively).
(2) High intercept for unforced best-fit lines (y-intercept $=97.3 \mathrm{kips}$ and 111.5 kips [432.8 kN and 496 kN] for the office and Energy methods, respectively).
- Much better correlations and a smaller scatter appear for both methods when predicting the capacity of small displacement piles compared to large displacement piles. For the office methods, the best-fit ratios and coefficients of determination are $1.372, \mathrm{r}^{2}=0.554$ and $1.108, \mathrm{r}^{2}=0.932$ for large and small displacement piles, respectively. For the Energy Approach, the best-fit ratios and coefficients of determination are 0.832 , $r^{2}=0.534$ and $0.856, r^{2}=0.916$ for large and small displacement piles, respectively.
- As a result of the above, both methods seem to correlate very well to each other in all cases. A similar ratio is produced for the relationship between the predictions of CAPWAP/TEPWAP and the Energy Approach, regardless of pile type. This ratio varies between 0.641 for all piles to 0.589 for large displacement piles and 0.764 for small displacement piles. The coefficient of determination for the best-fit line through zero, however, is the highest for the small displacement piles ($r^{2}=0.937$), compared to 0.554 for the large displacement piles. This may imply that both methods encounter the same difficulties under the same conditions in spite of the fact that the Energy Approach does not consider any dynamic resistance while the office methods consider dynamic resistance through viscous damping.
- No clear trends in the predictions appear on the basis of soil type at the tip, whereby predictions in all types of soil exist throughout, without any particular order. This conclusion is observational only and requires a quantitative evaluation that is presented in the following section.

8.3.3 Pile-Soil Type Correlations

The PD/LT pile-cases were subgrouped according to the different tip-soil types in an effort to investigate possible trends developing according to end-bearing soils. The correlations follow the sequence outlined in section 8.3.2 for three tip-soil conditions: sand and silt, clay and till, and rock.

(a) Sand and Silt

Figure 35 shows the correlation between the office method predictions and the actual static capacity for a PD/LT pile-case in sand and silt. The results remain consistent with figures 24 and 27 as they continue to under-predict. The best fit through zero shows an under-prediction ratio of 1.272 . The scatter is, however, smaller for predictions in sand and silt, with the ratio ranging from 2.5 to 0.80 (load test over-prediction) and the coefficient of determination is 0.749 .

The correlation between the Energy Approach predictions and the actual static capacity in sand and silt is shown in figure 36 . The scatter is consistent with that of figure 25 , with a best fit ratio very similar at 0.831 . The ratio range is unchanged and it is difficult to see any different trends based on the sand and silt subgroup. It is noticeable, however, that all predictions pertaining to small displacement piles are contained within a narrow range approximately between 0.80 and 1.60 .

The information in figure 27 indicates a good agreement between the office analysis predictions and the Energy Approach predictions for piles driven in sand and silt. The best-fit line forced through zero yields a ratio of 0.639 , which is very consistent with the correlations of tigures 26 and 31. The range of ratios remains between 1.00 and 0.40 , with the majority of the points falling between 1.00 and 0.60 . These results suggest that the sand and silt end-bearing soil has little effect on the overall trend of the prediction ratios.

(b) Clay and Till

The relationships in figure 38 between the office analysis predictions and the actual load test results for clay and till result in a similar best-fit line to the one obtained for the relationships in sand and silt. Considering the difference in the number of data points, however, it seems that the 51 cases of piles in clay and till are scattered much more relative to the 139 cases of piles in sand and silt. As a result, the coefficient of determination of the cases in sand and silt is much higher than that of clay and till (0.749 compared to 0.383 for the best-fit line through zero). The best-fit line yielded a ratio of 1.319, which far exceeds the best-fit ratio of figure 24 in which the small displacement piles were included. It is also interesting to note that the best-fit line resulted in a ratio of 1.057 with an intercept of $141 \mathrm{kips}(627 \mathrm{kN})$. Time effects have not been considered in figure 38 and the data represents all states of EOD and BOR. Time effects will be addressed in section 8.3.4.

The relationships between the Energy Approach predictions and the actual static capacity is shown in figure 39. This information indicates a similar scatter (see figures $25,30,33$, and 36) among the predictions, with the best-fit line remaining nearly unchanged at 0.872 (actual over-prediction). Based on figures 36 and 39, it appears that soil type, alone, has little effect on the overall performance of the Energy Approach.

Figure 40 demonstrates the consistency that has been evident in figures $26,31,34$, and 37. The correlation between the office analysis predictions and the Energy Approach remain within a range of 1.00 and 0.40 , with a distinct trend developing around the 0.80 line. The best-fit ratio (forced through zero) is 0.624 and a comparison with the sand and silt best-fit ratio (figure 37) shows a similar value. The coefficient of determination for the clay and till cases is substantially lower, however, and is approximately 0.539 , compared to 0.802 for the best-fit line through zero for the pile cases in sand and silt. This shows that although, on the average, the ratio is unchanged, the agreement between the methods is more scattered for piles in clay.
(c) Rock

The correlation between the office analysis predictions and the actual static capacity for piles end-bearing on rock showed a considerably better prediction ratio with a considerable scatter. The best-fit line in figure 41 yielded an under-prediction ratio of 0.908 with all points falling almost exclusively in the range of 1.25 and 0.60 (actual overprediction), yielding a poor coefficient of determination of 0.580 . These results may be attributable to three reasons: (1) all the piles driven into rock are small displacement piles (except for one), (2) the driving resistance in the majority of cases (13 out of 14) ranges between 10 and 44 blows per inch (0.394 and 1.73 blows per mm), and (3) the presented subset contains only 14 pile-cases.

The information in figure 42 for the correlation between the Energy Approach predictions and the actual static capacity in rock produced very good results, showing excellent agreement that is consistently within a range between 1.00 and 0.60 . The bestfit line shows a ratio of 0.823 with a coefficient of determination of 0.744 , which is consistent with the other correlations between the Energy Approach and the actual static capacity previously mentioned.

Figure 43 indicates a very good correlation between the office analysis predictions and the Energy Approach predictions. The best-fit line forced through zero yields a ratio of 0.901 and all data points fall within ± 20 percent of the best-fit line.
(d) Intermediate Conclusions

See tables 5, 6, and 7 for statistical data.
Different correlations have been investigated on the basis of soil-type conditions at the tip.

- The office analysis relationships seem to be less scattered for the predictions of piles in sand compared to those in clay. Both best-fit line coefficients indicate a similar ratio for both soil types, 1.272 and 1.319 for sand and clay, respectively. Their coefficients of determination differ substantially however, $\mathrm{r}^{2}=0.749$ and 0.383 for sand and clay, respectively. The "free" trend best-fit line for both cases show an intercept of 112 kips and 141 kips (498 kN and 627 kN) for sand and clay, respectively. The coefficients of determination of these lines are similar, however, to those for the lines forced through zero.
- The relationships of the Energy Approach analyses seem to be consistent for both clay and sand pile-cases. The best-fit ratios through zero and coefficients of determination are $0.831, \mathrm{r}^{2}=0.700$ and $0.872, \mathrm{r}^{2}=0.666$ for sand and clay, respectively.
- The relationships between the predicted capacity of piles in rock and the static capacity is different for both methods. The Energy Approach shows consistency in the best-fit coefficient and the coefficient of determination when compared to the sand and clay cases. The office analyses present a much better best-fit line with a relatively high scatter. The presented relationships for rock have been discussed separately and represent a separate case due to the small number of piles and the fact that all of them are small displacement piles driven in a high driving resistance.
- Less scatter appeared for the small displacement piles under all categories of soil types. This is in agreement with the previous section's conclusion that examined the pile-type case.
- A consistent ratio appears between the predictions of both methods and pile types. Higher scatter exists for the predictions in clay compared to sand $\left(r^{2}=0.539\right.$ in clay vs. $r^{2}=0.802$ in sand $)$.

8.3.4 Correlations of Pile and Soil Type for Different Driving Time

Further relationships were developed to examine any trends that may take place as a direct result of the time during driving for which the predictions were made. The subgrouping includes pile type (large displacement and small displacement) and time of driving ($E O D=$ end of driving and $B O R=$ heginning of restrike).

Two comments made in regard to these comparisons are:

- The EOD condition is of great importance as ideally we would like to accurately find the pile capacity at the end of driving state, which also enables us to control driving according to our real-time predictions.
- The BOR records consist of different driving times after the initial EOD. These records were lumped together as one group. As such, the actual setup time and stage in which the driving took place was not considered. For the cases that were examined independently, consistent improvements were observed with each elapse of time since EOD.

(a) All Piles - EOD

Figure 44 presents the relationship between the office analysis predictions and the actual static capacity for all PD/LT piles in all types of soil at the end of driving (AEA). The results show a scatter with the prediction ratio ranging from 4.41 to 0.57 , consistent with the best-fit lines produced in figure 24 for predictions at anytime during driving (AAA). The best-fit line forced through zero produced an under-prediction ratio of 1.248 , or about +25 percent of the actual static capacity. The coefficient of determination improves somewhat from $\mathrm{r}^{2}=0.692$ for all cases to 0.740 for the EOD conditions. Moreover, it seems that the under-prediction can be mostly attributed to the large displacement piles, whereas the predictions for the small displacement piles seem to concentrate within a zone of lower and more accurate load test over-prediction ratios. With regard to the best-fit line of the relationships in figure 44, it should be noted that the presented best-fit line is the one forced through zero (origin of axis). In most other cases, the slope of the forced best-fit line does not differ much from that of the unforced minimum square best-fit line. For the data presented in figure 44 the situation is different. The unforced best-fit line has a slope of 1.065 (see table 6) with a y-intercept of 152 kips (676 kN). This, again, implies some consistent under-prediction for the office methods in analyzing the EOD records.

The information in figure 45 indicates a prediction range from 1.67 to 0.60 for the correlation between the Energy Approach and the actual static capacity at EOD (AEA). The general scatter is substantially smaller than that of the office methods in figure 44, with a coefficient of determination of $r^{2}=0.804$. The best-fit prediction ratio increases substantially from the correlation for all cases (figure 25 , ratio of 0.839) to 0.901 (prediction over actual ≈ 1.11).

It is important to note that for all the cases where substantial under-predictions took place in the office analyses, reasonable predictions were achieved by the Energy Approach. Observing figure 44, it can be seen that in many cases, the predictions exceed the line denoted by 1.67 (load test 67 percent higher than the prediction) up to a ratio of 4.4. All these cases are within the 1.67 line of the Energy Approach. Although not easily explained, in many cases in which improvement in prediction of the office method was observed with time, more accurate predictions were obtained by the Energy Approach at the EOD.

Figures 46 and 47 present the same data as that presented in figures 44 and 45 , in the form of scattergrams of the actual over-prediction ratio versus the predicted capacity.

The aforementioned observations are enhanced by the data presentations of figures 46 and 47, emphasizing the relatively good predictions of the Energy Approach.

Figure 48 presents the correlation between the predictions of the office methods to the Energy Approach. As in previous similar correlations, the scatter between the methods is much smaller than that between the individual methods and the actual static capacity. It is interesting to note that the majority of the small displacement piles concentrate in a narrow band approximately between 0.7 and 1.0 . This means that both methods produce very similar results for small displacement piles. From figures 44 and 45 , it can also be concluded that both methods produce relatively accurate predictions for the small displacement piles.

(b) All Piles - BOR

The correlation between the actual static capacity and the office analysis predictions based on measurements at the beginning of restrike (ABA) is shown in figure 49. The range of predictions is between 2.5 and 0.80 , with a best-fit prediction ratio of 1.284. The majority of the predictions reside within the 1.28 to 0.80 range with a general scatter higher ($r^{2}=0.614$) than that observed in figure 44, where predictions were based on end-of-driving measurements ($r^{2}=0.740$).

Figure 50 indicates that a much greater scatter exists for Energy Approach predictions at the beginning of restrike than for predictions made at the end of driving (see figure 45). The tendency is to over-predict more for restrikes with the prediction ratios ranging from 1.25 to 0.40 . Consequently, the best-fit prediction ratio (0.786) is lower than that of figure 45 and the coefficient of determination is $r^{2}=0.578$, compared to 0.804 for EOD conditions.

The results presented in figure 50 are in sharp contrast to those shown in figure 45. While the Energy Approach provided much better predictions for the EOD condition compared to the office methods, it resulted in a larger scatter at the BOR state. In many cases, where improvement was observed with additional restrikes with time for the office methods, no such improvement (or, in many cases, worse predictions) were obtained by the Energy Approach.

Figure 51 exhibits a substantial scatter when compared to figure 48 for EOD predictions. The correlation between the two prediction methods is, however, considerably better than that observed in figures 49 and 50. The scatter exists mainly between 1.00 and 0.40 (CAPWAP/TEPWAP over Energy Approach) with a ratio of 0.593 for the slope of the best fit through zero (CAPWAP/TEPWAP over Energy Approach).
(c) Large Displacement Piles - EOD

Figure 52 shows the correlation of the office analysis predictions and the actual static capacity for large displacement at EOD (LEA). There is a significant scatter ($r^{2}=0.528$) ranging between 4.41 and 0.74 , with most data between 2.50 and 1.00 . The best-fit line
prediction ratio is 1.529 . The data in figure 52 indicates the difficulties in analyzing records of large displacement piles and the shortcoming of the office methods for the EOD state.

The information in figure 53 indicates relatively good agreement of the Energy Approach and the actual static capacity for large displacement piles at EOD. Although the scatter ranges from 1.67 to 0.60 and the coefficient of determination, $r^{2}=0.603$, the majority of points lie within ± 20 percent of the actual static capacity, whereby the best-fit line yields a prediction ratio of 0.966 . The relative accuracy of the Energy Approach for those cases is surprising and not yet well understood.

The relationship of the prediction methods large displacement piles at EOD is shown in figure 54. In general, the tendency appears to be within the 1.00 and 0.60 range, with a best-fit ratio of 0.612 . This ratio meets the substantial under-prediction of the office methods and the relatively high accuracy of the Energy Approach.
(d) Large Displacement Piles - BOR

Figure 55 presents the correlation of the office analysis predictions and the actual static capacity for large displacement piles at BOR (LBA). The correlation demonstrates improved accuracy of the office analyses for BOR compared to the results obtained in figure 52 for EOD. In general, most of the data points fall between 2.0 to 0.80 , with the best-fit line as a ratio of 1.307 and a coefficient of determination, $\mathrm{r}^{2}=0.596$. Figure 55 shows improved predictions for large displacement piles relative to the EOD state, but poor predictions relative to those obtained for small displacement piles.

The information in figure 56 indicates a significant scatter for the correlation of the Energy Approach and the actual static capacity for large displacement piles at BOR. This is in contrast to the results obtained in figure 53 for the predictions of large displacement piles at EOD. The prediction ratios range from 1.53 to 0.40 , with a best-fit ratio of 0.780 and a coefficient of determination, $\mathrm{r}^{2}=0.550$.

The correlation shown in figure 57, between the prediction methods at BOR, remains consistent with previous findings. The ratios range from 1.00 to 0.40 , with very few predictions outside of this :ange.
(e) Small Displacement Piles - EOD

Figures 58, 59, and 60 present the relationships between the load test results and the office predictions, load test results and the Energy Approach predictions, and the relationships between the prediction methods for small displacement piles at EOD (SEA). Based on previous observations: (1) predictions for small displacement piles (see figures 32, 33, and 34) were much better than those for large displacement piles, and (2) predictions for end of driving (see figures 44,45 , and 46) were better than those at the beginning of restrike, especially for the Energy Approach. Therefore, the combined criteria resulted with very good relationships, as expected.

Figure 58 shows that the office method best-fit line is $\mathrm{K}_{\mathrm{sw}}=1.113$ and $\mathrm{r}^{2}=0.933$. The relationships have the second best coefficient of determination of all combination cases examined in table 5 . The other similarly high correlations and accuracy were obtained for all small displacement piles (SAA) and their subgroup (SAS).

Figure 59 indicates a similar trend for the Energy Approach, yielding a best-fit line with a $\mathrm{K}_{\mathrm{Pp}}-$ ratio of 0.851 and $\mathrm{r}^{2}=0.917$. These results are similar to those of all small displacement piles (SAA) and those in sand (SAS).

Figure 60 reflects the outcome of figures 58 and 59 , with a best-fit correlation of $\mathrm{K}_{\mathrm{cw}}=0.757$ and $\mathrm{r}^{2}=0.939$.

(f) Small Displacement Piles - BOR

Figures 61 and 62 present the relationships between the predictions of the dynamic methods and the load test results for a small subgroup (12 cases in the figures and 15 cases in the statistical analysis) of small displacement piles at the beginning of restrike in all soils.

The obtained coefficients are $\mathrm{K}_{\mathrm{sw}}=1.069, \mathrm{r}^{2}=0.785$, and $\mathrm{K}_{\mathrm{sp}}=0.902, \mathrm{r}^{2}=0.737$, which indicate the following:

- The predictions for the BOR state are more scattered than for the EOD state, even for small displacement piles only.
- Out of the entire BOR group, the predictions for the small displacement piles are much better than those for the large displacement piles.

Figure 63 presents the relationships between the two prediction methods for 12 small displacement PD/LT piles in all types of soil at BOR (SBA), indicating a good correlation between them.

(g) Intermediate Conclusions

See tables 5, 6, and 7 for statistical data. Different correlations have been investigated based on the time of driving.

- Based on the data of figures 44 (46), 45 (47), 49, and 50 , it is evident that both dynamic methods perform better for the end of driving (EOD) condition than for beginning of restrike (BOR). This is especially true for the Energy Approach method, which shows excellent predictions for all cases of EOD condition (AEA). The conclusions regarding the office method are different. On one hand, there is an improvement for EOD when compared to the overall cases (AAA); on the other hand, the BOR cases, as shown in figure 44, do not reflect correctly the accuracy of the method.

As mentioned earlier, a closer look at the time of driving showed consistent improvement of the office methods with time. The data of figure 49 may, therefore, not correctly represent the accuracy of the method, which may improve when examined, for example, for only the last BOR of each case.

- Based on the data of figures $52,53,55$, and 56 , it is clear that the capacity predictions for large displacement piles are problematic for both dynamic analyses, CAPWAP/TEPWAP, and the Energy Approach. CAPWAP/TEPWAP seem to produce, however, similar results at BOR than at EOD (see figures 44 and 49) subjected to the aforementioned comments. The Energy Approach, on the other hand, produces more accurate results at the end of driving than at the beginning of restrike (see figures 45 and 50). The relationships between the prediction methods, CAPWAP/TEPWAP, and the Energy Approach, show strong correlation between the methods regardless of the time of driving (see figures 43 and 48).
- The above conclusion becomes more clear when comparing the performance of the large displacement piles and small displacement piles for the same driving time. For example, the office method, when comparing AEA (figure 44) to LEA (figure 52) and SEA (figure 58), clearly shows that the predictions for large displacement piles at EOD is very poor compared to that of the small displacement piles at EOD. The same conclusion holds true for beginning of restrike, demonstrating again the importance of the pile type. Similar conclusions are obtained by checking the Energy Approach method for AEA (figure 45), LEA (figure 53), and SEA (figure 59).

8.4 STATISTICAL ANALYSIS OF DATA SET PD/LT

A statistical analysis of the correlations of data set PD/LT was performed in order to quantify the accuracy of both the office analysis and the Energy Approach predictions as well as the correlation between them. The statistical analysis was performed in three stages:
(I) Determination of the first-order best-fit lines (forced through zero and yintercept) by linear regression, in combination with the sample coefficient of determination $\left(r^{2}\right)$ to measure the accuracy of the best fit (note that the coefficient of determination is a square of the coefficient of correlation (r)).
(II) Examination of the fitness of the data to known probability distribution functions (PDF).
(III) Determination of the mean and the standard deviation of the individual ratios (e.g., load test to Energy Approach) as a measure of variability.

8.4.1 Linear-Regression Analysis

The results of the linear regression analysis performed on selected subgroups of table 4 and the presented graphical relationships of section 8.3 are summarized in tables 5, 6, and 7.

The tables summarize the different subgroups for the ratios between: (1) the static resistance to the office method predictions (K_{sw}) in table 5, (2) the static resistance to the Energy Approach predictions ($\mathrm{K}_{\text {sp }}$) in table 6, and (3) the relationship between the predictions of the office methods and those of the Energy Approach in table 7.

The first two columns of each of the tables list the pile-case subgroup and the total number of cases considered in that group. The number of cases shown in the tables may be equal or greater than the numbers shown in the figures for the same correlations. This occurs when some of the data points exceed the dimensions of the plots. Linear regression was preformed for each group to determine: (1) the best-fit line ratio, (2) the best-fit line ratio forced through zero, and (3) the coefficient of determination for each analysis. The results are listed in columns 3,4 , and 5 for the best-fit line and 6 and 7 for the best-fit line through zero, in each table. For example, the best-fit line forced through zero for the $\mathrm{K}_{\text {sp }}$ coefficients calculated for the subgroup AEA (all piles, at EOD, for all soils) was found to have a slope of 0.900 with a coefficient of determination, $r^{2}=0.804$. The sample coefficient of determination (r^{2}) for each subgroup was determined to measure the representativeness (accuracy) of the best fit and the best fit through zero.

The coefficient of determination $\left(\mathbf{r}^{2}\right)$ represents the proportion of the sum of squares of deviations of the y-values about their mean, and it is a measure of the contribution of " x " in prediction " y ". By definition, a scatter at higher x-values will influence this coefficient more than a scatter close to the origin of axes. The coefficient of determination varies between 0 and 1; the first indicating no correlation or contribution and the last $\left(r^{2}=1\right)$ is a perfect match where all the points fall on the best-fit, least-squares line. For example, $r^{2}=0.6$ means that 60 percent of the sum of squares of deviations of the observed y values about their mean is attributed to the linear relations between y and x. (actual vs. predicted). In other words, 60 percent of the variability in y is explained by the regression equation. According to Ryan (1989), a meaningful correlation is obtained with $r^{2} \geq 0.80$, which coincides with $p \leq 0.0011 ; p$ is the probability of obtaining an F-value as or larger than the calculated value. This value of $r^{2}=0.8$ may be rigorous relative to
correlations in geotechnical engineering. The results, therefore, may be reviewed in the following ranges (Veneziano, 1993):

$$
\begin{array}{ll}
r^{2} \geq 0.80 & \text { good correlation } \\
0.60 \leq r^{2}<0.80 & \text { moderate correlation } \\
r^{2}<0.60 & \text { poor correlation }
\end{array}
$$

Table 5 presents the results of the $K_{\text {dw }}$ analysis and the best correlation of all subgroups was found to be for all small displacement piles in all soils (SAA) and in sand and silt (SAS). Reasonable correlation was found for all piles based on the end of driving records, especially for the small displacement piles. Poor correlations were found for allpiles at BOR in all soils (ABA) and for all large displacement piles (LAA), both at EOD (LEA) and at BOR (LBA).

The coefficients of table 6 indicate that the Energy Approach presents slightly better correlation overall for all cases (AAA) than that of the office methods, where both methods show moderate correlation according to the above coefficient of determination standards. The Energy Approach method shows very high accuracy for small displacement piles in all soils at all times (SAA), mostly due to its excellent performance in sand and silt (SAS). The Energy Approach prediction shows excellent correlation for all piles at EOD in all soils (AEA), producing a best fit through zero sample coefficient of distribution of 0.804 , mostly again due to the high accuracy for the small displacement piles (SEA). Low accuracy was also determined for all piles at BOR in all soils (ABA), similar to that of the office methods.

Table 7 enables the examination of under what conditions both methods predict similarly or differently, indicating that, in general, the correlation between the methods is stronger than the correlation between the individual methods and the actual capacity with especially strong correlations in the cases where both methods predict well, namely small displacement piles and end of driving.

8.4.2 Actual Distributions of the K Coefficients and their Probabilistic Models

The K coefficients are defined as follows:

$$
\begin{gather*}
\boldsymbol{K}_{s w}=\frac{\text { Actualstatic capacity }}{\text { CAPWAP/TEPWAPprediction }} \tag{38}\\
\boldsymbol{K}_{\boldsymbol{\phi}}=\frac{\text { Actualstatic capacity }}{\text { EnergyApproachprediction }} \tag{39}
\end{gather*}
$$

$$
\begin{equation*}
K_{\infty}=\frac{\text { CAPWAP/TEPWAPprediction }}{\text { EnergyApproachprediction }} \tag{40}
\end{equation*}
$$

These ratios are equivalent to the ratios marked and denoted by the straight lines on the scatter plots of sections 8.3.2, 8.3.3, and 8.3.4.

The distributions of the individual \mathbb{K} coefficients for all PD/LT pile-cases are presented in figures 64,66 , and 68 in the form of histograms. The cumulative frequency distribution of $K_{\text {sw }}$ and K_{sp} are presented in figures 65 and 67 , respectively. The histograms were plotted for K coefficients ranging from 0.0 to >3.0 in 0.1 intervals and include all the available information. The left y -axis shows the total number of K coefficient occurrences, whereas the right y-axis shows the frequency (normalized number of occurrences).

The common parameters most often used to evaluate prediction methods are the mean and standard deviation of the normal distribution. The normal distribution best represents occurrences ranging from $-\infty$ to $+\infty$ with the highest probability at the mean. The ratio between the actual capacity to the predicted one (or its inverse) is limited between 0 to $+\infty$ and, hence, its distribution is not symmetrical. Even though, in many cases where the data is "normally" distributed, the normal distribution will represent it in a reasonable fashion (e.g., see figure 68). In many other cases, the normal distribution is incapable of correctly reflecting the accuracy (represented by the mean) and the precision (represented by the standard deviation) of the predicting method. A better probability distribution function for cases ranging from 0 to $+\infty$ is the log-normal distribution. A simple transformation can be performed from the mean and standard deviation of the normal distribution to the log-normal distribution parameters (see, for example, Benjamin and Cornell, 1970), which allows plotting of the log-normal distribution. Both distributions, normal and the corresponding (transformed) log-normal distributions, were plotted for the ratios between actual capacity to the predictions of the office methods ($\mathrm{K}_{\text {swo }}$ figure 64) and the actual capacity to the Energy Approach predictions ($\mathrm{K}_{\text {sp }}$, figure 65). In any case, the actual data must be reviewed as scatter graphs (section 8.3.2, 8.3.3, and 8.3.4) and histograms before the establishment of any conclusions.

The information presented in figure 64 for the $\mathrm{K}_{\text {sw }}$ coefficients (actual capacity over CAPWAP/TEPWAP predictions) indicates a concentration of cases (about 50 percent of all cases) between 0.9 and 1.3 , with a significant scatter of the other 50 percent of the cases across a wide range of K values from 0.57 to 4.41 . A normal distribution curve was added to the actual data based on the analysis results presented in table 8. The actual data seems to differ from the normal distribution and explains the relatively large standard deviations of the K_{sw}. The "transformed" \log-normal distribution seems to better represent the actual data, but yet, falls short of representing it accurately. An
attempt to improve the log-normal distribution representation of the actual data was carried out by decreasing the standard deviation parameter ($\ln \sigma_{x}$, note: not that of the standard deviation). The results are shown in the form of a log-normal distribution and plotted using dashed lines that seem to represent the peak and over-prediction side better, but do not seem to represent the under-prediction side as well. Figure 65 presents the cumulative frequency distribution of the K_{sw} ratio. Due to the large range of values, a gradual increase in the cumulative frequency distribution takes place for values of K_{sw} greater than 1.3.

Figure 66 shows the distribution of the K_{sp} values for all PD/LT pile-cases and the data fits reasonably well with the normal distribution description. The "transformed" lognormal distribution seems to fit the data even better, allowing good representation of the data skewness. About 75 percent of the cases fall in the range between 0.6 and 1.2 , with the mean at 0.925 . An attempt to improve the log-normal distribution was carried out by decreasing the standard deviation $\left(\ln \sigma_{x}\right)$. The results, again, are better only for part of the data, showing better agreement with the peak and the underestimation, and worse representation for the overestimated capacities. Figure 67 presents the cumulative frequency distribution of the K_{sp} ratio. A moderate increase exists for about 50 cases between 0.4 and 0.7 , followed by a sharp increase of about 150 cases between 0.7 and 1.2. The distribution ends with a moderate slope of about 10 cases, up to about 1.7.

The distribution of the $\mathrm{K}_{\text {ew }}$ coefficients is presented in figure 68. The results of this distribution indicate excellent correlation between the office analysis predictions and the Energy Approach predictions (CAPWAP/TEPWAP over Energy Approach), represented well by the normal distribution.

8.4.3 Mean and Standard Deviation Analysis

Table 8 presents the statistical analysis for all PD/LT correlations listed in table 4 (see chapter 6 and tables 20 through 23 in appendix A for details). The first column of table 8 lists the pile-case group according to the abbreviation system shown in table 4. The table reports the normal distribution mean and standard deviation for each subgroup in a similar sequence mentioned in section 8.3.2. The subcolumns for each K coefficient list the total number of pile-cases analyzed, the mean value determined, and the corresponding standard deviation. It should be emphasized that even for cases in which better representation is given through the log-normal distribution, the mean and the standard deviation remain a powerful tool for the evaluation of the accuracy, through the mean, and for the precision, through the standard deviation.

8.5 INTERPRETATION OF THE CONTROLLING PARAMETERS

8.5.1 Overview

Section 4.4.4 outlined the expected performance of the dynamic analyses based on the hypothesis that the majority of the energy is lost through soil inertia. This hypothesis was partially confirmed by the results presented in the previous sections. A closer examination of the controlling parameters and their influence on the accuracy of the dynamic analyses follows.

8.5.2 Dynamic Predictions - Pile Area Ratio Graphical Correlations

To investigate a possible relationship between the office analysis, the Energy Approach predictions, and pile geometry, K_{sw} and K_{sp} values were correlated with the pile area ratio (see sections 4.4.2 and 4.4.3).

Figures 69 and 70 present the correlation between the K_{yw}-values and the pile area ratio (A_{R}). The data are presented using two scales (linear and logarithmic) to allow the assessment of the many cases for which A_{R} varies between approximately 90 to 300 , which create a "spot" when presented in a linear scale. For pile area ratios less than 350, a significant scatter can be observed with K_{sw}-values exceeding 2.0. In general, $\mathrm{K}_{\text {sw }}$-values closer to unity appear as A_{R} increases. Some scatter appears, however, at very large A_{R} ratios that may indicate the influence of additional parameters on the $\mathrm{K}_{\text {sw }}$-values (e.g., driving resistance).

Figures 71 and 72 present the correlation between K_{sp} and the pile area ratio. Significantly smaller scatter appears in the K_{sp}-values compared to that of the $\mathrm{K}_{\text {sww }}$-values. The general trend is similar to that of figure 69 - most scatter appears within a zone in which the pile area ratio is smaller than 350.

The pile area ratio seems to enable the quantification of the definition of large displacement and small displacement piles. The information from figures 69 through 72 suggest that considerable consistency is developed for pile area ratios >350. From these correlations, it was concluded that large displacement piles can be defined as those with pile area ratios < 350 and small displacement piles defined as those with pile area ratios >350. The following section examines the relationship between the prediction of the dynamic analyses and the driving resistance, as the complementary factor to the pile type in controlling the soil's inertia (see section 4.4 for background).

8.5.3 Dynamic Predictions - Driving Resistance Graphical Correlations

Figure 73 presents the ratio between the load test results over the office method predictions (K_{sw}) vs. blow count at the time of measurement for all PD/LT pile-cases
Table 8. Statistical analysis of K coefficients for all PD/LT pile-cases.

Pile- Case Group	KsW			Ksp			Kew		
AAA	206	1.367	0.5334	208	0.925	0.2932	206	0.712	0.1815
AAS	141	1.385	0.4758	141	0.942	0.3127	141	0.702	0.1771
Aeviation	No.	Mean	Slandard Deviation	No.	Mlandard Deviation				
AAC	51	1.443	0.6760	53	0.906	0.2689	51	0.681	0.1736
AAR	14	0.906	0.1922	14	0.827	0.1402	14	0.925	0.1073
AEA	97	1.478	0.6167	98	1.023	0.3073	97	0.743	0.1844
AES	58	1.534	0.5310	58	1.089	0.3244	58	0.742	0.1766
AEC	28	1.598	0.7576	29	0.971	0.2742	28	0.672	0.1729
AER	11	0.877	0.1957	11	0.810	0.1510	11	0.936	0.1132
ABA	109	1.268	0.4257	110	0.838	0.2509	109	0.684	0.1748
ABS	83	1.282	0.4049	83	0.840	0.2605	83	0.674	0.1731
ABC	23	1.254	0.5160	24	0.827	0.2354	23	0.692	0.1777
ABR	3	1.010	0.1667	3	0.888	0.0816	3	0.887	0.0890

[^1]Table 8. Statistical analysis of K coefficients for all PD/LT pile-cases (continued).

	Ksw			Ksp			Kew		
Case Group	No.	Mean	Standard Deviation	No.	Mean	Standard Deviation	No.	Mean	Standard Deviation
LAA	162	1.399	0.5250	164	0.925	0.3056	162	0.689	0.1756
LAS	118	1.366	0.4448	118	0.927	0.3246	118	0.693.	0.1714
LAC	43	1.501	0.6969	45	0.925	0.2559	43	0.670	0.1842
LAR	1	-	-	1	-	-	1	-	-
LEA	68	1.574	0.6177	69	1.069	0.3192	68	0.718	0.1830
LES	44	1.535	0.5142	44	1.108	0.3427	44	0.750	0.1773
LEC	24	1.646	0.7802	25	0.975	0.2577	24	0.661	0.1827
LER	-	-	-	-	-	-	-	-	-
LBA	94	1.272	0.4041	95	0.827	0.2554	94	0.668	0.1678
LBS	74	1.265	0.3657	74	0.819	0.2613	74	0.659	0.1595
LBC	19	1.317	0.5399	20	0.854	0.2433	19	0.683	0.1904
LBR	1	-	-	1	-	-	1	-	-

[^2]Table 8. Statistical analysis of K coefficients for all PD/LT pile-cases (continued).

Pile- Case Group	KSW			Mean	Standard Deviation	No.	Mean	Slandard Deviation	No.
SAA	44	1.250	0.5542	44	0.926	0.2445	44	0.796	0.1798
SAS	23	1.486	0.6127	23	1.021	0.2313	23	0.746	0.2028
SAC	8	1.132	0.4679	8	0.820	0.3172	8	0.738	0.0854
SAR	13	0.906	0.2001	13	0.822	0.1448	13	0.921	0.1104
SEA	29	1.252	0.5616	29	0.935	0.2616	29	0.802	0.1772
SES	14	1.530	0.6013	14	1.029	0.2606	14	0.715	0.1784
SEC	4	1.309	0.6067	4	0.949	0.4120	4	0.738	0.0797
SER	11	0.807	0.1957	11	0.810	0.1510	11	0.936	0.1132
SBA	15	1.247	0.5591	15	0.908	0.2150	15	0.784	0.1904
SBS	9	1.418	0.6604	9	1.009	0.1912	9	0.793	0.2392
SBC	4	0.955	0.2442	4	0.691	0.1436	4	0.737	0.1033
SBR	2	1.064	0.1960	2	0.888	0.1154	2	0.839	0.0461

[^3](AAA). As indicated in chapter 6 , the blow count per inch was often calculated based on records of blows per foot.

There is considerable scatter for all driving resistances (especially at the two extremes, namely, very low blow count (less than 10 BPI) and very high blows) at refusal (no set). It also can be noted that the predictions for the small displacement piles present, on average, much better performance than that of the large displacement piles, including the area of low driving resistance.

Figure 74 presents the ratio between the load test results to the Energy Approach predictions (K_{pp}), in the same format as that of figure 73. Considerably less scatter appears in the figure compared to that of figure 73. A large range of $K_{\text {sp }}$ (from overprediction of $K_{\text {sp }} \approx 0.4$ to under-prediction of about $K_{\text {sp }} \approx 1.7$) appears at the range of small resistance to driving of about 0 to 10 BPI . A few additional observations can be made in relationship to figure 74:

- In the majority of the cases, the Energy Approach over-predicts, however, there is improvement with the increase of driving resistance.
- Most of the significant under-predictions exist in the low-resistance zone.
- Very good performance appears at very high driving resistance, when actually no displacement takes place under each blow.

8.5.4 Dynamic Predictions - Driving Resistance and Time of Driving Graphical Correlations

Additional subdivision of the dynamic analyses prediction ratios vs. driving resistance was conducted based on the time of driving, namely, end of driving (EOD) and beginning of restrike (BOR).

(a) All Piles at EOD

Figure 75 presents the correlation between driving resistance and K_{sw} coefficient for all piles at EOD (AEA) and the results indicate a scatter similar to the results shown in figure 73. A major scatter remains at low driving resistances when the full resistance of the soil is mobilized.

The correlation between the $K_{\text {sp }}$ coefficients for all piles in all soil types at EOD (AEA) and driving resistance is presented in figure 76, and the results are similar to those of figure 60. This is consistent with the findings of sections 8.3 and 8.4 for piles at the end of driving, with the emphasis on under-prediction cases at the low-resistance zone. Most of the under-prediction cases observed in figure 74 for the low blow count seem to be a result of the EOD cases as shown in figure 76. These cases are confined, however,
mostly within a zone of blow count between 0 to 6 BPI , which may, as a result, be defined as "easy driving."

(b) All Piles at BOR

Figure 77 represents the relationship of driving resistance and K_{sw}-values for all piles at BOR (ABA). A scatter among the predictions for driving resistances ranging from 0 to 25 blows per inch (0.98 blows per mm) is observed. The scatter appears, however, to be substantially smaller than that observed for EOD in figure 75, with lower underpredictions.

In both cases (EOD and BOR), the office analysis predictions produced a scatter. At the BOR, however, a large concentration of cases appear around the $\mathrm{K}_{\mathrm{sw}}=1$ and the K_{sw}-values are lower cases than those observed in figure 75.

Figure 78 presents the relationship of driving resistance and $\mathrm{K}_{\text {sp }}$-values for all piles at BOR (ABA). A major scatter, mostly to the over-prediction side, appears in figure 78. When comparing figures 76 and 78 to figure 74, it appears that:

- The Energy Approach tends to over-predict at the low driving resistance for BOR cases and under-predict at the EOD cases. It should be emphasized that both under-prediction and over-prediction at the lowresistance zone appears in both EOD and BOR. The extreme overpredictions, however, exist only at the BOR and the extreme underpredictions exist only at the EOD.
- On the average, the performance of the Energy Approach at EOD is better than that at BOR, especially for piles with driving resistances greater than 6 BPI (0.24 blows per mm).

8.5.5 Dynamic Predictions - Driving Resistance and Pile-Type Graphical Correlations

Section 8.5.2 examined the relationship between the dynamic predictions and the pile area ratio and concluded that small displacement piles can be referred to as piles with $A_{\mathbf{R}}>350$. Section 8.5.3 examined the relationship between the dynamic predictions and the driving resistance and determined the effect of the driving resistance on the accuracy of the predictions of both dynamic analyses.

The subdivision of the dynamic predictions vs. driving resistance to small and large displacement, based on the pile area ratio definition, is presented in this section.
(a) Small Displacement Piles

The relationship between $K_{\text {sw }}$ and the driving resistance for small displacement piles with $\mathbf{A}_{\mathrm{R}}>350$ is presented in figure 79. The office analysis, in general, appears to perform better for small displacement piles than for the large displacement piles. When
comparing the data in figure 79 to that of 69 and 70 , a relatively good agreement exists between the predicted and observed capacity with the exception of very low and very high driving resistances. This agreement suggests that the relatively high underpredictions of the office methods for the small displacement piles are associated with either very low driving resistances (which result in high inertia of the soil mass) of less than 6 BPI (0.24 blows per mm), or a very high driving resistance (which results in a lack of full-capacity mobilization). In relationship to figure 79 and the following figures, it should be clear that the criteria for distinguishing between small and large displacement piles is the area ratio of $A_{R}=350$. As such, the open symbols in those figures refer to piles that, by observation, would be considered as large displacement piles (e.g., square concrete pile), however, their area ratio of $A_{R}>350$ would categorize them as small displacement piles as explained in section 4.4 and concluded in section 8.5.2.

Figure 80 presents the relationship between driving resistance and $K_{\text {sp }}$ for piles with $A_{R}>350$. Excellent agreement exists between the predictions of the Energy Approach and the observed static capacity for all driving resistances. Two major conclusions can be made regarding the data in figure 80 :

- The influence of the pile type on the performance of the dynamic methods is evident. The mean K_{pp} for figure 80 is 0.938 with a standard deviation of 0.239 , which indicates an excellent performance.
- The highest scatter and over- and under-predictions occur at the lower resistance zone of less than 6 BPI (0.24 blows per mm).

In reference to figures 79 and 80 , it should be noted that with the new definition of small/large displacement piles based on the pile area ratio of 350, the piles that were previously considered as large displacement (i.e., open symbols) fit well into the general trend of the small displacement piles.
(b) Large Displacement Piles

Figures 81 and 82 present the relationships between K_{sw} and K_{sp} to the driving resistance for large displacement (pile area ratio <350), respectively. The data in figure 81 indicates that substantial scatter appears in the predictions of the office method. Overprediction takes place especially for the low blow count (figure 79) and under-predictions appear to exist for all driving resistances. When compared to predictions of the small displacement piles (figure 79), the existing scatter and under-prediction seem to be much more significant.

Figure 82 indicates that much larger scatter and inaccuracy in prediction exists for the large displacement piles when compared to the small displacement piles (figure 80). The inaccuracy is, however, highly related to the driving resistance with a decrease in scatter (mainly due to the decrease in the under-prediction) and an increase in accuracy with
the increase in the driving resistance. The predictions above approximately 10 BPI (0.39 blows per mm) seem to be much better than those below that resistance.

8.5.6 The Effect of the Combined Major Controlling Parameters on the Accuracy of the Dynamic Predictions

(a) Breakdown of Combinations

The previous correlations that were presented throughout chapter 8 indicated the following factors as the major controlling parameters:

- Pile type, according to the pile area ratio, distinguishing between large displacement piles with $A_{R}<350$ and small displacement piles with $A_{R}>350$.
- Time of driving, distinguishing between end of driving (EOD) records to analyses on records obtained at some time later at the beginning of restrike (BOR).
- Driving resistance, distinguishing between easy driving of less than 6 BPI (0.24 blows per mm) to intermediate driving resistance between 6 and 12 BPI (0.24 and 0.47 blows per mm) with high driving resistance above 12 BPI (0.47 blows per mm).
- Type of soil, distinguishing between predictions of piles predominately in clay vs. those driven in granular materials.

Different combinations of these factors are presented in the following sections with a summary of their statistical data presented in table 9.
(b) Combinations of Pile Type and Driving Resistance

The previously mentioned criteria for pile type and driving resistance assisted in establishing the following combinations:
(1) Small displacement piles with easy driving; $A_{R}>350$ and blow count <6 BPI (0.24 blows per mm) shown in figures 83 and 84 for K_{sw} and K_{sp}, respectively.
(2) Small displacement piles with hard driving; $A_{R}>350$ and blow count >6 BPI (0.24 blows per mm) shown in figures 85 and 86 for K_{sw} and K_{sp}, respectively.
(3) Large displacement piles with easy driving; $A_{R}<350$ and blow count <6 BPI (0.24 blows per mm) shown in figures 87 and 88 for K_{sw} and K_{sp}, respectively.

Table 9. Statistical analysis of the area ratio, resistance, and time of driving combination.

Pile Area Ratlo	Driving Resistance	Time of Driving	Ksw			Ksp		
			No.	Mean	Standard Deviation	No.	Mean	Standard Deviation
<350	ail piles	anytime	144	1.427	0.543	146	0.920	0.317
<350	O-6 BPI	anytime	64	1.374	0.512	64	0.962	0.347
<350	$\geq 6 \mathrm{BPI}$	anytime	80	1.469	0.567	82	0.887	0.288
<350	all piles	EOD	56	1.643	0.654	57	1.068	0.345
<350	$0-6 \mathrm{BPI}$	EOD	36	1.545	0.569	36	1.102	0.349
<350	$>8 \mathrm{BPI}$	EOD	20	1.820	0.769	21	1.026	0.340
<350	all piles	BOR	88	1.290	0.407	89	0.825	0.257
<350	0.8 BPI	BOR	28	1.155	0.319	28	0.783	0.254
<350	$>6 \mathrm{BPI}$	BOR	60	1.352	0.430	61	0.844	0.258
>350	all piles	anytime	57	1.247	0.502	57	0.938	0.239
>350	0-6 BPI	anytime	18	1.542	0.595	16	1.031	0.259
>350	$\geq 6 \mathrm{BPI}$	anytime	41	1.133	0.414	41	0.902	0.224
>350	all piles	EOD	39	1.151	0.408	39	0.902	0.240
>350	$0-6 \mathrm{BPI}$	EOD	12	1.476	0.492	12	1.021	0.291
>350	$>6 \mathrm{BPI}$	EOD	27	1.161	0.473	27	0.928	0.214
>350	all piles	BOR	18	1.225	0.530	18	0.897	0.240
>350	0.6 BPI	BOR	4	1.740	0.901	4	1.062	0.154
>350	$\geq 6 \mathrm{BPI}$	BOR	14	1.078	0.274	14	0.850	0.243

$1 \mathrm{BPI}=0.039$ blows per mm
$\begin{array}{lll}\text { Pile-case legend: } \quad & \begin{array}{ll}<350 & \text { - pile area ratio definition of large displacement piles. } \\ & >350 \\ \text { - pile area ratio definition of small displacement piles. }\end{array} \\ 0-6 \mathrm{BPI} & \begin{array}{l}\text { - low driving resistance, resulting in full mobillzation of the } \\ \text { soil resistance. }\end{array} \\ & >6 \mathrm{BPI} & \begin{array}{l}\text {-intermediate }(6 \text { to } 12 \mathrm{BPI}) \text { and high driving resistance } \\ \text { of more than } 12 \mathrm{BPI} .\end{array}\end{array}$
(4) Large displacement piles with hard driving; $A_{R}<350$ and blow count >6 BPI (0.24 blows per mm) shown in figures 89 and 90 for K_{ow} and $\mathrm{K}_{\text {sp }}$, respectively.

The above four combinations clearly suggest (with the limitation of the small number of pile-cases for some combinations):

- Small displacement piles with high driving resistance present very good prediction conditions for the dynamic methods.
- These conditions are followed by the predictions for small displacement piles with easy driving resistance (especially for the Energy Approach).
- Less favorable conditions result from the predictions of large displacement piles with high resistance (especially for the office methods).
- The worst conditions are presented for the large displacement piles with easy driving where both dynamic methods predict poorly with a high scatter.

(c) Combinations of Pile Type, Driving Resistance, and Time of Driving

The above combinations were further investigated, incorporating the time of driving into the above criteria as follows:
(I) Small displacement piles with easy driving at the end of driving; $\mathbf{A}_{\mathbf{R}}>350$ and blow count < 6 BPI (0.24 blows per mm) shown in figures 91 and 92 for K_{sw} and K_{rp}, respectively.
(II) Small displacement piles with hard driving at the end of driving; $\mathrm{A}_{\mathrm{R}}>350$ and blow count >6 BPI (0.24 blows per mm) shown in figures 93 and 94 for $K_{\text {sw }}$ and $K_{\text {sp }}$, respectively.
(III) Large displacement piles with easy driving at the end of driving; $\mathbf{A}_{\mathbf{R}}<350$ and blow count < 6 BPI (0.24 blows per mm) shown in figures 95 and 96 for $K_{\text {sw }}$ and $\mathrm{K}_{\text {rp }}$, respectively.
(IV) Large displacement piles with hard driving at the end of driving; $\mathrm{A}_{\mathrm{R}}<350$ and blow count >6 BPI (0.24 blows per mm) shown in figures 97 and 98 for K_{sw} and K_{sp}, respectively.
(V) Small displacement piles at the beginning of restrike for all driving resistances; $A_{R}>350$ shown in figures 99 and 100 for $K_{\text {sw }}$ and $K_{\text {sp }}$, respectively.
(VI) Large displacement piles at the beginning of restrike for all driving resistances; $A_{R}<350$ shown in figures 101 and 102 for $K_{\text {ow }}$ and $K_{\text {sp }}$, respectively.

These combinations again suggest the following trends (with the limitation of the small number of pile-cases for some combinations):

- Small displacement piles at the end of driving (EOD) with high driving resistance present very good prediction conditions for the office methods and even better conditions for the predictions of the Energy Approach.
- The office methods present a considerable scatter for large displacement piles at the end of driving, especially in the cases with high driving resistance. The Energy Approach presents very good predictions under these conditions as can be observed for the 20 pile-cases shown in figure 98.
- The prediction conditions for small displacement piles at EOD with low driving resistance presented difficulties for the office methods, while good predictions were obtained by the Energy Approach. Again, this conclusion may be affected by the limited number of pile-cases for this combination.
- The least favorable prediction conditions for the end of driving state for the office methods occur for large displacement piles with high driving resistance.
- The predictions conditions for small displacement piles at BOR with all driving resistances yield good results for the Energy Approach and a moderate scatter for the office predictions. This conclusion should once again be subjected to the limited number of pile-cases for this combination.
- Small variation was observed between easy and hard driving resistances that may have been the result of the scatter produced in both methods.

Figure 21. Tip soil conditions vs. calculated case damping coefficient (J_{c}) based on static load test results for 208 PD/LT pile-cases.

Figure 22. Side soil conditions vs. Smith side damping coefficient based on CAPWAP/TEPWAP results.

Figure 23. Tip soil conditions vs. Smith tip damping coefficient based on CAPWAP/TEPWAP results.

Figure 24. Static load test results vs. CAPWAP or TEPWAP predictions for 204 PD/LT pile-cases in all types of soil (AAA).

Figure 25. Static load test results vs. Energy Approach predictions for 202 PD/LT pile-cases in all types of soil (AAA).

Figure 26. CAPWAP or TEPWAP predictions vs. Energy Approach predictions for 201 PD/LT pile-cases in all types of soil (AAA).

Figure 27. K_{sw} vs. CAPWAP/TEPWAP predictions for 206 PD/LT pile-cases in all types of soil (AAA).

Figure 28. K_{sp} vs. Energy Approach predictions for 208 PD/LT pile-cases in all types of soil (AAA).

Figure 29. Static load test results vs. CAPWAP or TEPWAP predictions for 162 large displacement PD/LT pile-cases in all types of soil (LAA).

$1 \mathrm{kip}=4.448 \mathrm{kN}$

Figure 30. Static load test results vs. Energy Approach predictions for 163 large displacement PD/LT pile-cases in all types of soil (LAA).

Figure 31. CAPWAP or TEPWAP predictions vs. Energy Approach predictions for 161 large displacement PD/LT pile-cases in all types of soil (LAA).

Figure 32. Static load test results vs. CAPWAP or TEPWAP predictions for 42 small displacement PD/LT pile-cases in all types of soil (SAA).

$1 \mathrm{kip}=4.448 \mathrm{kN}$

Figure 33. Static load test results vs. Energy Approach predictions for 40 small displacement PD/LT pile-cases in all types of soil (SAA).

$1 \mathrm{kip}=4.448 \mathrm{kN}$

Figure 34. CAPWAP or TEPWAP predictions vs. Energy Approach predictions for 38 small displacement PD/LT pile-cases in all types of soil (SAA).

Figure 35. Static load test results vs. CAPWAP or TEPWAP predictions for 139 PD/LT pile-cases in sand and silt (AAS).

Figure 36. Static load test results vs. Energy Approach predictions for 136 PD/LT pile-cases in sand and silt (AAS).

$1 \mathrm{kip}=4.448 \mathrm{kN}$

Figure 37. CAPWAP or TEPWAP predictions vs. Energy Approach predictions for 136 PD/LT pile-cases in sand and silt (AAS).

Figure 38. Static load test results vs. CAPWAP or TEPWAP predictions for $51 \mathrm{PD} / \mathrm{LT}$ pile-cases in clay and till (AAC).

$1 \mathrm{kip}=4.448 \mathrm{kN}$

Figure 39. Static load test results vs. Energy Approach predictions for $53 \mathrm{PD} / \mathrm{LT}$ pile-cases in clay and till (AAC).

Figure 40. CAPWAP or TEPWAP predictions vs. Energy Approach predictions for 51 PD/LT pile-cases in clay and till (AAC).

Figure 41. Static load test results vs. CAPWAP or TEPWAP predictions for 14 PD/LT pile-cases in rock (AAR).

Figure 42. Static load test results vs. Energy
Approach predictions for 14 PD/LT pile-cases in rock (AAR).

Figure 43. CAPWAP or TEPWAP predictions vs. Energy Approach predictions. for $14 \mathrm{PD} / \mathrm{LT}$ pile-cases in rock (AAR).

$1 \mathrm{kip}=4.448 \mathrm{kN}$

Figure 44. Static load test results vs. CAPWAP or TEPWAP
predictions for 96 PD/LT pile-cases in all types of soil at EOD (AEA).

$$
1 \mathrm{kip}=4.448 \mathrm{kN}
$$

Figure 45. Static load test results vs. Energy Approach predictions for $94 \mathrm{PD} / \mathrm{LT}$ pile-cases in all types of soil at EOD (AEA).

Figure 46. K_{nw} vs. CAPWAP/TEPWAP predictions for 97 PD/LT pile-cases at EOD in all types of soil (AEA).

Figure 47. $\mathrm{K}_{\mathrm{>p}}$ vs. Energy Approach predictions for $98 \mathrm{PD} / \mathrm{LT}$ pile-cases at EOD in all types of soil (AEA).

$1 \mathrm{kip}=4.448 \mathrm{kN}$
Figure 48. CAPWAP or TEPWAP predictions vs. Energy Approach predictions for 94 PD/LT pile-cases in all types of soil at EOD (AEA).

Figure 49. Static load test results vs. CAPWAP or TEPWAP predictions for $108 \mathrm{PD} / \mathrm{LT}$ pile-cases in all types of soil at BOR (ABA).

Figure 50. Static load test results vs. Energy Approach predictions for 108 PD/LT pile-cases in all types of soil at BOR (ABA).

$$
1 \mathrm{kip}=4.448 \mathrm{kN}
$$

Figure 51. CAPWAP or TEPWAP predictions vs. Energy Approach predictions for $108 \mathrm{PD} / \mathrm{LT}$ pile-cases in all types of soil at BOR (ABA).

Figure 52. Static load test results vs. CAPWAP or TEPWAP predictions for 68 large displacement $\mathrm{PD} / \mathrm{LT}$ pile-cases in all types of soil at EOD (LEA).

Figure 53. Static load test results vs. Energy Approach predictions for 69 large displacement PD/LT pile-cases in all types of soil at EOD (LEA).

Figure 54. CAPWAP or TEPWAP predictions vs. Energy Approach predictions for 68 large displacement PD/LT pile-cases in all types of soil at EOD (LEA).

$$
1 \mathrm{kip}=4.448 \mathrm{kN}
$$

Figure 55. Static load test results vs. CAPWAP or TEPWAP predictions for 94 large displacement PD/LT pile-cases in all types of soil at BOR (LBA).

Figure 56. Static load test results vs. Energy Approach predictions for 94 large displacement PD/LT pile-cases in all types of soil at BOR (LBA).

$1 \mathrm{kjp}=4.448 \mathrm{kN}$

Figure 57. CAPWAP or TEPWAP predictions vs. Energy Approach predictions for 93 large displacement PD/LT pile-cases in all types of soil at BOR (LBA).

$$
1 \mathrm{kip}=4.448 \mathrm{kN}
$$

Figure 58. Static load test results vs. CAPWAP or TEPWAP predictions for 22 small displacement PD/LT pile-cases in all types of soil at EOD (SEA).

Figure 59. Static load test results vs. Energy Approach predictions for 20 small displacement PD/LT pile-cases in all types of soil at EOD (SEA).

Figure 60. CAPWAP or TEPWAP predictions vs. Energy Approach predictions for 20 small displacement PD/LT pile-cases in all types of soil at EOD (SEA).

$1 \mathrm{kip}=4.448 \mathrm{kN}$

Figure 61. Static load test results vs. CAPWAP or TEPWAP predictions for 12 small displacement PD/LT pile-cases in all types of soil at BOR (SBA).

Figure 62. Static load test results vs. Energy Approach predictions for 12 small displacement PD/LT pile-cases in all types of soil at BOR (SBA).

$$
1 \mathrm{kip}=4.448 \mathrm{kN}
$$

Figure 63. CAPWAP or TEPWAP predictions vs. Energy Approach predictions for 12 small displacement PD/LT pile-cases in all types of soil at BOR (SBA).

Ksw histogram and frequency distribution for 206 PD/LT pile-cases (AAA)

Figure 64. Histogram and frequency distributions of K_{ow} for $206 \mathrm{PD} / \mathrm{LT}$ pile-cases in all types of soil (AAA).

Figure 65. Cumulative frequency distribution of K_{w} for 206 PD/LT pile-cases in all types of soil (AAA).

Ksp histogram and frequency distribution for 208 PD/LT pile-cases (AAA)

Figure 66. Histogram and frequency distributions of K_{op} for 208 PD/LT pile-cases in all types of soil (AAA).

Figure 67. Cumulative frequency distribution of K_{fp} for 208 PD/LT pile-cases in all types of soil (AAA).

Kew histogram and frequency distribution for 206 PD/LT pile-cases (AAA)

Kew values
Figure 68. Histogram and frequency distribution of K_{cw} for 206 PD/LT pile-cases in all types of soil (AAA).

Figure 69. K_{sw} vs. the pile area ratio $\left(\mathrm{A}_{\mathrm{R}}\right)$ for 201 PD/LT pile-cases in all types of soil.

Figure 70. K_{sw} vs. the pile area ratio $\left(\mathrm{A}_{\mathrm{R}}\right)$ for 201 PD/LT pile-cases in all types of soil (logarithmic scale).

Figure 71. K_{sp} vs. the pile area ratio (A_{R}) for $203 \mathrm{PD} / \mathrm{LT}$ pile-cases in all types of soil.

Figure 72. K_{op} vs. the pile area ratio $\left(\mathrm{A}_{\boldsymbol{\imath}}\right)$ for 203 PD/LT pile-cases in all types of soil (logarithmic scale).

Figure 73. $\mathrm{K}_{\text {ow }}$ vs. blow count (BPI) for 206
PD/LT pile-cases in all types of soil (AAA).

Figure 74. $\mathrm{K}_{\mathrm{øp}}$ vs. blow count (BPI) for 208 PD/LT pile-cases in all types of soil (AAA).

Figure 75. $\mathrm{K}_{\text {sw }}$ vs. blow count (BPI) for 95 PD/LT pile-cases in all types of soil at EOD (AEA).

Figure 76. K_{sp} vs. blow count (BPI) for 96 PD/LT pile-cases in all types of soil at EOD (AEA).

Figure 77. K_{sw} vs. blow count (BPI) for 109
PD/LT pile-cases in all types of soil at BOR (ABA).

Figure 78. K_{sp} vs. blow count (BPI) for 110
PD/LT pile-cases in all types of soil at BOR (ABA).

Figure 79. K_{sw} vs. blow count (BPI) for $57 \mathrm{PD} / \mathrm{LT}$ pile-cases with pile area ratios >350 in all types of soil.

Figure 80. K_{sp} vs. blow count (BPI) for 57 PD/LT pile-cases with pile area ratios >350 in all types of soil.

Figure 81. K_{sw} vs. blow count (BPI) for 144 PD/LT
pile-cases with pile area ratios <350 in all types of soil.

Figure 82. K_{sp} vs. blow count (BPI) for 146 PD/LT pile-cases with pile area ratios < 350 in all types of soil.

Figure 83. $\mathrm{K}_{\text {sw }}$ vs. blow count (BPI) for $16 \mathrm{PD} / \mathrm{LT}$ pile-cases with pile area ratios >350 and blow counts $<6 \mathrm{BPI}(0.24$ blows $/ \mathrm{mm}$) in all types of soil.

Figure 84. K_{sp} vs. blow count (BPI) for 16 PD/LT pile-cases with pile area ratios >350 and blow counts $<6 \mathrm{BPI}(0.24$ blows $/ \mathrm{mm})$ in all types of soil.

Figure 85. K_{sw} vs. blow count (BPI) for $41 \mathrm{PD} / \mathrm{LT}$ pile-cases with pile area ratios >350 and blow counts $>6 \mathrm{BPI}(0.24$ blows $/ \mathrm{mm})$ in all types of soil.

Figure 86. K_{sp} vs. blow count (BPI) for $41 \mathrm{PD} / \mathrm{LT}$ pile-cases with pile area ratios >350 and blow counts $>6 \mathrm{BPI}$ (0.24 blows $/ \mathrm{mm}$) in all types of soil.

Figure 87. K_{sw} vs. blow count (BPI) for 64 PD/LT pile-cases with pile area ratios <350 and blow counts $<6 \mathrm{BPI}(0.24$ blows $/ \mathrm{mm}$) in all types of soil.

Figure 88. K_{sp} vs. blow count (BPI) for $64 \mathrm{PD} / \mathrm{LT}$ pile-cases with pile area ratios < 350 and blow counts <6 BPI (0.24 blows/mm) in all types of soil.

Figure 89. K_{sw} vs. blow count (BPI) for $80 \mathrm{PD} / \mathrm{LT}$ pile-cases with pile area ratios <350 and blow counts $>6 \mathrm{BPI}$ (0.24 blows $/ \mathrm{mm}$) in all types of soil.

Figure $90 . \mathrm{K}_{\mathrm{sp}}$ vs. blow count (BPI) for $82 \mathrm{PD} / \mathrm{LT}$ pile-cases with pile area ratios <350 and blow counts $>6 \mathrm{BPI}(0.24$ blows $/ \mathrm{mm}$) in all types of soil.

Figure 91. K_{sw} vs. blow count (BPI) for $12 \mathrm{PD} / \mathrm{LT}$ pile-cases at EOD with pile area ratios >350 and blow counts <6 BPI (0.24 blows/mm).

Figure 92. K_{sp} vs. blow count (BPI) for $12 \mathrm{PD} / \mathrm{LT}$ pile-cases at EOD with pile area ratios >350 and blow counts $<6 \mathrm{BPI}$ (0.24 blows/mm).

Figure 93. K_{sw} vs. blow count (BPI) for 27 PD/LT pile-cases at EOD with pile area ratios >350 and blow counts >6 BPI (0.24 blows/mm).

Figure 94. K_{sp} vs. blow count (BPI) for $27 \mathrm{PD} / \mathrm{LT}$ pile-cases at EOD with pile area ratios >350 and blow counts >6 BPI (0.24 blows/mm).

Figure 95. K_{sw} vs. blow count (BPI) for $36 \mathrm{PD} / \mathrm{LT}$ pile-cases at EOD with pile area ratios <350 and blow counts <6 BPI (0.24 blows/mm).

Figure 96. $\mathrm{K}_{\text {sp }}$ vs. blow count (BPI) for 36 PD/LT pile-cases at EOD with pile area ratios <350 and blow counts <6 BPI (0.24 blows/mm).

Figure 97. K_{sw} vs. blow count (BPI) for $20 \mathrm{PD} / \mathrm{LT}$ pile-cases at EOD with pile area ratios <350 and blow counts >6 BPI (0.24 blows/mm).

Figure 98. K_{sp} vs. blow count (BPI) for $21 \mathrm{PD} / \mathrm{LT}$ pile-cases at EOD with pile area ratios < 350 and blow counts >6 BPI (0.24 blows/mm).

Figure 99. K_{sw} vs. blow count (BPI) for 18 PD/LT pilecases at BOR with pile area ratios >350 and all blow counts.

Figure 100. K_{rp} vs. blow count (BPI) for 18 PD/LT pilecases at BOR with pile area ratios >350 and all blow counts.

Figure 101. $\mathrm{K}_{\text {sw }}$ vs. blow count (BPI) for $88 \mathrm{PD} / \mathrm{LT}$ pilecases at BOR with pile area ratios <350 and all blow counts.

Figure 102. K_{sp} vs. blow count (BPI) for 89 PD/LT pilecases at BOR with pile area ratios <350 and all blow counts.

CHAPTER 9 - ANALYSIS OF DATA SET PD

9.1 INTRODUCTION

9.1.1 Purpose

This chapter presents the graphical and statistical analysis of the pile-cases of data set PD. Graphical relationships in the form of scattergrams considering pile type and soil type are presented. A statistical analysis was performed in combination with the graphical relationships in an effort to correlate the results of chapter 8 with pile-cases that were not load tested to failure.

9.1.2 Overview

Two different types of correlations were examined for the pile-cases of data set PD. These can be summarized as follows:

(a) Damping Parameters - Soil-Type Correlations

Smith damping parameters (side and tip) obtained from CAPWAP results were correlated to the soil type at the side and tip of the pile, respectively. These graphical relationships are presented in section 9.2.
(b) Office Method - Field Method Predictions

The relationship between the office analysis predictions and the Energy Approach predictions of data set PD were obtained. These relationships can be compared to the correlations of data set PD/LT that were presented in the form of the coefficient $\mathrm{K}_{\text {ew }}$, the ratio of CAPWAP or TEPWAP predictions over the Energy Approach predictions. Strong correlations between the two prediction methods may prove beneficial where load test data is not available. This approach can be especially useful since piles are dynamically monitored far more often than they are load tested to failure; hence, large data sets can be accumulated. The subgrouping of these correlations is consistent with table 3.

9.2 SMITH DAMPING PARAMETERS AND SOIL-TYPE CORRELATIONS

Figure 103 presents the relationship between Smith side damping parameters and the soil conditions along the pile shaft for 378 pile-cases analyzed by CAPWAP. The parameters shown are those obtained directly from the CAPWAP analyses performed on the pile-cases of data set PD. No corrections were performed on these parameters. A
substantial scatter exists in figure 103 with no clear correlation between the damping and the soil type at the pile shaft.

The information in figure 104, presenting the relationship between Smith tip damping parameters and tip soil conditions, indicates that no specific correlation can be made. These results are similar to those obtained in figures 22 and 23 for data set PD/LT.

9.3 CAPWAP AND THE ENERGY APPROACH CORRELATIONS

The following graphs compare CAPWAP and Energy Approach predictions based on pile type and soil type at the pile tip. The pile-type subgrouping includes large and small displacement piles, as well as miscellaneous piles (see table 3). The indicated slopes of the lines are identical to the parameter $\mathrm{K}_{\text {ew }}$ which is the ratio of CAPWAP predictions to the Energy Approach predictions.

9.3.1 All Piles • All Soils

The relationship between the predicted capacities of CAPWAP and the Energy Approach for 398 PD pile-cases is shown in figure 105. The information indicates a good agreement between the two types of analyses, with the majority of data points in the ratio range of 1.00 to 0.60 . The best-fit line through zero yields a ratio of $K_{\text {ew }}=$ 0.695 (CAPWAP over Energy Approach) with a coefficient of determination $r^{2}=0.699$. It can be seen that the small displacement piles (solid symbols) are concentrated in a narrow band, indicating a very good correlation of the two prediction methods for these pile-cases.

9.3.2 Large Displacement Piles

The following graphs compare the CAPWAP results to that of the Energy Approach predictions for large displacement piles.

(a) All Cases

Figure 106 presents all 238 large displacement pile-cases in all types of soil. The data points range from approximately 1.10 to 0.20 . Overall, good agreement is presented with the best-fit line through zero at 0.676 (CAPWAP over Energy Approach) and a general trend between 1.00 and 0.60 . The coefficient of determination is $\mathrm{r}^{2}=0.650$.

(b) Sand and Silt

The information in figure 107 indicates excellent correlation between CAPWAP predictions and Energy Approach predictions for cases of large displacement piles in sand and silt. Most of the data points lie within the range of 1.00 to 0.60 . The best-fit line is at 0.669 with $\mathrm{r}^{2}=0.812$.
(c) Clay and Till

Figure 108 shows the correlation of CAPWAP and Energy Approach predictions for 50 large displacement pile-cases in clay and till. The majority of data points fall on or near the 0.80 line, with other cases reaching 0.40 and slightly below. The best-fit line through zero is at $\mathrm{K}_{\mathrm{cw}}=0.600$ with $\mathrm{r}^{2}=0.404$.
(d) Rock

The relationship between CAPWAP and the Energy Approach for 78 cases of large displacement piles found in rock is shown in figure 109. The information indicated a general scatter with the majority of data points falling between 1.00 and 0.60 . The bestfit line through zero yielded $\mathrm{K}_{\text {ew }}=0.652$ with $\mathrm{r}^{2}=0.572$.

(e) Unknown Soil Type

The correlation of the prediction methods for the 22 cases of large displacement piles in unknown soil types is presented in figure 110. It can be seen that regardless of soil type, good agreement is generally observed in these cases between the CAPWAP and Energy Approach predictions. The obtained best-fit line through zero is $\mathrm{K}_{\mathrm{ew}}=0.844$ with $\mathrm{r}^{2}=$ 0.589 .

(f) Intermediate Conclusions

- Generally good agreement exists between the predictions of CAPWAP to those of the Energy Approach for large displacement piles. The obtained relationship for all large displacement piles, at all times and in all types of soil (242 cases), is similar to that obtained for the corresponding cases in data set PD/LT.
- The breakdown of the piles to the different soil types shows that the highest correlation between the methods exists for piles driven in sand and silt. The worst correlation is obtained for piles driven in clay and till.
- No subdivision was made regarding the time of driving. The analysis of data set PD is, therefore, equivalent to all time of driving cases in data set PD/LT.

9.3.3 Small Displacement Piles

The correlations of the two dynamic analysis predictions for small displacement piles in all soil types are presented in figures 111 through 114.

(a) All Cases

The information in figure 111 indicates an outstanding correlation between the CAPWAP and Energy Approach predictions for 76 small displacement pile-cases in all
soil types. The data points are almost exclusively within the range of 1.00 and 0.60 with the best-fit line at $K_{e w}=0.800$ and $\mathrm{r}^{2}=0.826$.

(b) Sand and Silt

The correlation for 26 small displacement pile-cases in sand and silt is shown in figure 112. A very well-defined relationship is observed with all data points within the range of 1.00 and 0.60 . The best-fit line forced through zero is shown with a ratio of $\mathrm{K}_{\mathrm{ew}}=0.807$ and $r^{2}=0.922$.

(c) Clay and Till

Figure 113 presents the correlation between CAPWAP and Energy Approach predictions for 21 small displacement pile-cases in clay and till. These data points are also indicating a relatively good correlation with the best-fit line at $\mathrm{K}_{\mathrm{ew}}=0.723$ and $\mathrm{r}^{2}=$ 0.736 . The data points are within the range of 1.00 and 0.60 , however, there is a larger scatter than that observed in sand and silt. This is also indicated by the reduction in the value of the calculated coefficient of determination.
(d) Rock

Figure 114 presents the comparison of the dynamic prediction methods for 29 small displacement pile-cases on rock. The relationship yields similar results to those of figures 111 through 113, with an excellent correlation between the prediction methods. The best-fit ratio is equal to $\mathrm{K}_{\mathrm{ew}}=0.838$ with ${r^{2}}^{2}=0.797$.
(e) Intermediate Conclusions

- A better agreement with better correlation was found between the office method and the Energy Approach for small displacement piles when compared to large displacement piles. As both data sets contained a large number of cases (242 large displacement and 76 small displacement pilecases for all soil types at all driving times), the findings reflect the importance of pile type in the accuracy of the predictions.
- The predictions for small displacement piles in sand were found to match and correlate better than those in clay. In both cases, a better fit was found when compared to the large displacement pile-cases with the respective soil type. These results indicate that the soil type is secondary to the pile type as factors shaping the prediction results.

9.3.4 Miscellaneous Piles

The relationships of CAPWAP and Energy Approach predictions for miscellaneous piles for different soil conditions are presented in figures 115 through 119.

(a) All Cases

The correlation between the two prediction methods is presented in figure 115 for 85 miscellaneous pile-cases in all soil types. It is shown that there is excellent agreement between these predictions, with the majority of data points falling in the range of 1.00 to 0.60 . The best-fit ratio is $\mathrm{K}_{\mathrm{cw}}=0.763$ (CAPWAP over Energy Approach) with $\mathrm{r}^{2}=0.873$.
(b) Sand and Silt

Figure 116 shows similar agreement between the two prediction methods for 40 miscellaneous pile-cases in sand and silt. The best-fit ratio equals 0.787 and most of the data points are within ± 20 percent of the 0.80 line with $r^{2}=0.857$.

(c) Clay and Till

The correlation of the predictions for 21 miscellaneous pile-cases in clay and till are shown in figure 117. Very good correlations are obtained with a best-fit ratio of $\mathrm{K}_{\mathrm{cw}}=0.735$. The majority of data points lie within the 1.00 to 0.60 range, with a coefficient of determination of $r^{2}=0.783$.
(d) Rock

The information of figure 118 indicates a very good agreement between the CAPWAP and Energy Approach predictions for 19 pile-cases of piles found in rock. The best-fit ratio is 0.742 with $r^{2}=0.899$.
(e) Unknown Soil Type

Figure 119 presents the correlation results for five cases of miscellaneous piles driven in unknown soils. Good correlation is obtained from this small and non-specific data set.

9.4 STATISTICAL ANALYSIS OF DATA SET PD

In order to quantify the correlations obtained from the graphical relationships of section 9.3, a statistical analysis was performed as follows:
(1) Determination of the first-order best-fit lines (forced through zero and y-intercept) by linear regression along with the sample coefficient of determination (r^{2}) to measure the quality of the best-fit line.
(2) Determination of the mean and standard deviation of the $\mathrm{K}_{\text {ew }}$ ratio (CAPWAP over Energy Approach) as a measure of the accuracy (through the mean) and precision (through the standard deviation) of the calculated ratio distribution.

Table 10. Linear regression analysis of $K_{\text {ew }}$ for PD pile-cases.

Kew = CAPWAP predictions / Energy Approach predictions						
Pile- Case Group	Linear Regression					
	Number	Best Fit			Forced through Zero	
		X-coefficient	y-intercept	r-squared	X-coefficient	r-squared
AA	403	0.603	75.4	0.723	0.695	0.699
LA	242	0.593	77.0	0.667	0.676	0.650
LS	92	0.580	81.8	0.841	0.669	0.812
LC	50	0.407	142.4	0.570	0.600	0.404
LR	78	0.563	89.7	0.591	0.652	0.572
LN	22	0.814	31.5	0.590	0.844	0.589
SA	76	0.751	22.7	0.830	0.800	0.826
SS	26	0.774	13.0	0.924	0.807	0.922
SC	21	0.651	32.2	0.747	0.723	0.736
SR	29	0.728	56.3	0.817	0.838	0.797
MA	85	0.678	51.8	0.892	0.763	0.873
MS	40	0.705	42.5	0.871	0.787	0.857
MC	21	0.640	46.6	0.807	0.735	0.783
MR	19	0.652	76.8	0.924	0.742	0.899
MN	5	0.816	61.3	0.933	0.955	0.898

Pile-case legend:
XX

- first letter denotes pile type: $\mathbf{A}=$ all piles, L=large displacement, $S=s m a l l$ displacement, and $M=m i s c e l l a n e o u s ~ p i l e s . ~$
- second letter denotes soil type: $A=a l l$ soils, $S=$ sand and silt, $C=$ clay and till, $R=$ rock, and $N=$ not available.

9.4.1 Linear Regression Analysis

The results of the linear regression analysis performed on the subgroups of data set PD are presented in table 10 . The first two columns of table 10 report the pile-case subgroups and the total number of pile-cases included in the analysis, respectively. This analysis is similar to that which was performed in section 8.4.1 for data set PD/LT. The results of the best-fit linear regression performed for each subgroup are listed in columns 3,4 , and 5 . Column 3 shows the first-order best-fit ratio, and the corresponding intercept is presented in column 4. Column 5 shows the sample coefficient of determination (r^{2}) for each subgroup. The coefficients for the best-fit ratio forced through zero are listed in columns 6 and 7 . Column 6 presents the first-order best-fit sample coefficient and column 7 presents the corresponding coefficient of determination.

Table 10 indicates a relatively consistent best-fit ratio (forced through zero) for all pile types and soil types. It can be seen that pile type is the controlling factor in the resulting best-fit ratio as very little change is seen for large or small displacement piles in different soils. For example, considering small displacement piles, the most extreme best-fit ratios range from 0.723 for piles found in clay and till to 0.838 for piles found in rock. Similarly, for large displacement piles in sand, clay, and rock, the best-fit ratios range from 0.676 to 0.600 . Excellent coefficients of determination are reported for all small displacement piles $\left(r^{2}=0.826\right)$ and, in particular, in sand $\left(r^{2}=0.922\right)$. This is in comparison to all large displacement piles $\left(r^{2}=0.600\right)$ that improve in sand only to $r^{2}=$ 0.812 , compared to clay with $r^{2}=0.404$.

9.4.2 Mean and Standard Deviation Analysis

Table 11 presents the results of the statistical analysis, evaluating the mean and standard deviation of the PD subgroups outlined in table 3. The first two columns are consistent with table 10 and they report the pile-case subgroup and the total number of pile-cases included in each analysis, respectively. The mean of all cases was found to be 0.774 with mean values obtained for the subgroups in the range of 0.701 to 0.863 (with the exception of miscellaneous piles in unknown soil types, which represent a subgroup of only five piles). Overall, the values obtained are very consistent with very good standard deviations compared to those obtained for the relationships between the predictions and the actual capacity. This suggests that the prediction methods may be similar in their analysis and, based on the mean values, it appears that soil type has a lesser effect on the correlation between CAPWAP and the Energy Approach predictions.

9.5 SUMMARY AND CONCLUSIONS

Data set PD contains information that allows capacity predictions to be conducted on 403 pile-cases, based on dynamic measurements. As no comparison can be made to the actual static resistance, the results serve two purposes:

Table 11. Statistical analysis of $K_{e w}$ for PD pile-cases.

Pile- Case Group	Kew = CAPWAP/ Energy Approach		
AA	403	0.774	0.2099
LA	242	0.742	0.2359
LS	92	0.754	0.1753
LC	50	0.701	0.2093
LR	78	0.722	0.2202
LN	22	0.860	0.4528
SA	76	0.813	0.1255
SS	26	0.815	0.0862
SC	21	0.741	0.1396
SR	29	0.863	0.1229
MA	85	0.827	0.1734
MS	40	0.861	0.1410
MC	21	0.806	0.2297
MR	19	0.821	0.1544
MN	5	1.022	0.1233

Pile-case legend:	XX	- first letter denotes pile type: $A=a l l$ piles, $L=l a r g e$ displacement, $S=s m a l l$ displacement, and $M=$ miscellaneous piles. - second letter denotes soil type: A=all soils, $S=$ sand and silt, $C=$ clay and till, $R=r o c k$, and $\mathrm{N}=$ not available.

- They can be compared to the pile-cases of data set PD/LT to allow assessment of trends found in that data set.
- They indirectly serve as an excellent indicator for the controlling parameters through the conditions in which the different prediction methods are close to each other or different from each other.

The following conclusions are based on the scattergrams presented in figures 103 through 119:

1. No correlations seem to exist between soil type and damping parameters for either Smith damping at the pile side or the pile tip.
2. General comparisons between the best-fit linear regression of the different subgroups in data set PD/LT (tables 5 through 7) and in data set PD (table 10) indicate a reasonably good agreement between the two independent data sets. Some of the major parameters are summarized in table 12 below.

Table 12. Linear regression summary of selected PD/LT and PD subgroups.

PileCase Group	$\mathrm{K}_{\text {ew }}$ Coefficient					
	PD/LT			PD		
	number	x-coetficient	r^{2}	number	x-coefficient	r^{2}
AAA	206	0.641	0.766	403	0.695	0.699
LAA	162	0.589	0.554	242	0.676	0.650
LAS	118	0.571	0.586	92	0.669	0.812
LAC	43	0.446	0.600	50	0.600	0.404
SAA	44	0.764	0.937	76	0.800	0.826
SAS	23	0.750	0.942	26	0.807	0.922
SAC	8	0.779	0.971	21	0.723	0.736

For many of these cases, r^{2} can serve as a good indicator of the agreement as mentioned above. The assigned x-coefficient refers to the slope of the best-fit line forced through zero. A more realistic comparison may be obtained through the slope of the natural best-fit line.
3. General comparisons between the parameters of the normal distribution of the different subgroups in data set PD/LT (table 8) indicate a reasonably good agreement between the two independent data sets. Some of the major parameters are summarized in table 13.
4. Based on the data, it seems that both methods predict fairly similarly in the case of small displacement piles and, in particular, in sand. The small displacement piles present higher mean values, higher x-coefficients, higher coefficients of determination, and smaller standard deviation ratios. This conclusion verifies the fact that when small soil inertia and soil damping exist, both methods give similar results.
5. The cases related to the large displacement piles exhibit lower x coefficients, lower coefficients of determination, and lower mean values, while having higher standard deviation values. This indicates that, in the case of large displacement piles, the dynamic methods differ from each other as the damping modeling has an active role in the CAPWAP analysis of these cases.
6. The consistent pattern of better agreement in the predictions for piles in sand compared to those in clay indicates the relative importance of the soil type. This, however, is secondary to the importance of pile type.

Table 13. Statistical analysis summary of selected PD/LT and PD subgroups.

Pile Case Group	Kew Coefficient					
	number	mean	standard deviatio n	number	mean	standard deviatio n
AAA	206	0.712	0.182	403	0.774	0.210
LAA	162	0.689	0.176	242	0.742	0.236
LAS	118	0.693	0.171	92	0.754	0.175
LAC	43	0.670	0.184	50	0.701	0.209
SAA	44	0.796	0.180	76	0.813	0.126
SAS	23	0.746	0.203	26	0.815	0.086
SAC	8	0.738	0.085	21	0.741	0.140

Figure 103. Side soil conditions vs. Smith side damping based on CAPWAP results for 372 PD pile-cases.

Figure 104. Tip soil conditions vs. Smith tip damping based on CAPWAP results for 377 PD pile-cases.

$1 \mathrm{kip}=4.448 \mathrm{kN}$

Figure 105. CAPWAP predictions vs. Energy Approach predictions for 398 PD pile-cases in all types of soil.

$1 \mathrm{kip}=4.448 \mathrm{kN}$

Figure 106. CAPWAP predictions vs. Energy Approach predictions for 238 large displacement PD pile-cases in all types of soil.

$1 \mathrm{kip}=4.448 \mathrm{kN}$

Figure 107. CAPWAP predictions vs. Energy Approach predictions for 89 large displacement PD pile-cases in sand and silt.

Figure 108. CAPWAP predictions vs. Energy Approach predictions for 50 large displacement PD pile-cases in clay and till.

Figure 109. CAPWAP predictions vs. Energy Approach predictions for 76 large displacement PD pile-cases in rock.

$1 \mathrm{kjp}=4.448 \mathrm{kN}$

Figure 110. CAPWAP predictions vs. Energy Approach predictions for 22 large displacement PD pile-cases in unknown soil types.

Figure 111. CAPWAP predictions vs. Energy Approach predictions for 76 small displacement PD pile-cases in all types of soil.

$1 \mathrm{kip}=4.448 \mathrm{kN}$

Figure 112. CAPWAP predictions vs. Energy Approach predictions for 26 small displacement PD pile-cases in sand and silt.

$1 \mathrm{kip}=4.448 \mathrm{kN}$

Figure 113. CAPWAP predictions vs. Energy Approach predictions for 21 small displacement PD pile-cases in clay and till.

$1 \mathrm{kip}=4.448 \mathrm{kN}$

Figure 114. CAPWAP predictions vs. Energy Approach predictions for 29 small displacement PD pile-cases in rock.

$1 \mathrm{kip}=4.448 \mathrm{kN}$

Figure 115. CAPWAP predictions vs. Energy Approach predictions for 85 miscellaneous PD pile-cases in all types of soil.

Figure 116. CAPWAP predictions vs. Energy Approach predictions for 40 miscellaneous PD pile-cases in sand and silt.

$1 \mathrm{kip}=4.448 \mathrm{kN}$

Figure 117. CAPWAP predictions vs. Energy Approach predictions for 21 miscellaneous PD pile-cases in clay and till.

$$
1 \mathrm{kip}=4.448 \mathrm{kN}
$$

Figure 118. CAPWAP predictions vs. Energy Approach predictions for 19 miscellaneous PD pile-cases in rock.

Figure 119. CAPWAP predictions vs. Energy Approach predictions for five miscellaneous PD pile-cases in unknown soil types.

CHAPTER 10 - SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

10.1 SUMMARY

Two methods are currently employed for the analysis of dynamic measurements obtained during pile driving. Both methods are based on the solution of the one-dimensional wave equation for the stress wave traveling through the pile following the hammer's impact. The first method, an office analysis, utilizes a numerical solution of a mathematical model for the pile-soil system under measured boundary conditions (e.g., the computer codes CAPWAP or TEPWAP). The other method, a field analysis known as the Case Method, which is based on a simplified closed-form solution and empirical correlations, provides an instantaneous evaluation of the pile capacity following each hammer blow.

Substantial experience suggests the existence of major limitations in the field method. In addition, no large-scale evaluation has been carried out for the office methods since their development.

A simplified method, based on the energy balance between the total energy delivered to the pile and the work done by the pile/soil systems, is proposed as an alternative field method. This method, entitled the Energy Approach, assumes elasto-plastic load displacement pile-soil relations. Calculated transferred energy and maximum pile displacement from the measured data together with the field blow count are used as input parameters for the Energy Approach. The method does not consider the propagation process and is aimed at providing a real-time pile capacity prediction in the field. The Energy Approach simplified analysis considers the energy loss from elastic soil/pile deformations and the work done by the static resistance due to plastic soil deformation.

The stress-wave-based solutions represent the external forces acting on the penetrating pile as a stationary soil resistance. Traditionally, this resistance consists of static and dynamic components. The static component is usually considered to be elasto-plastic and the dynamic component is represented by viscous damping.

It was presented and argued (in this research) that this type of formulation does not correctly represent the physical phenomena associated with pile driving. The dynamic resistance component needs to stand for phenomena such as soil inertia, wave radiation, and true damping. These factors are determined by the pile shape, penetration depth, acceleration at the pile toe, and the surrounding soil and, hence, cannot be correlated through viscous damping parameters to soil type alone.

The energy loss due to various combined factors associated with the pile penetration, such as damping radiation and inertia, are not considered directly by the Energy Approach. As such, the method serves as an excellent indicator for pointing out the physical phenomena that should account for dynamic energy losses during driving.

Two large data sets were gathered at the University of Massachusetts at Lowell. One, PD/LT, contains 208 dynamic measurement cases on 120 piles monitored during driving, followed by a static load test to failure. The data were obtained from various sources and reflect varying combinations of soil-pile-driving systems. The other, PD, contains data on 403 piles monitored during driving and was provided by Pile Dynamics, Inc. of Cleveland, Ohio. All cases were examined and analyzed.

Data set PD/LT was analyzed for the static resistance, dynamic measurements, office analysis predictions, Case damping coefficient, and the Energy Approach predictions. Data set PD was analyzed for CAPWAP analysis and the Energy Approach predictions.

The results of this study invalidate the concept of a unique recommended correlation between the viscous damping parameters and soil type in both wave-based analyses. It is shown that energy losses should be attributed more to soil inertia rather than soil damping. As such, energy losses are mostly pile-shape-dependent, in addition to the soil type and driving resistance influences.

A pile-shape parameter denoted as area ratio $\left(A_{R}\right)$ was introduced as a quantitative measurement for the pile shape. The area ratio allows one to distinguish between large and small displacement piles on the basis of their soil mobilization at the pile tip relative to their skin-friction contact area.

The accuracy of the dynamic methods, when compared to the actual static capacity, and the relations between the predictions themselves, provided insight into the controlling mechanisms and the preferable conditions for these methods. It was found that best results are obtained for small displacement piles (with area ratio $A_{R}>350$). The worst analysis conditions are for large displacement piles in clay under low driving resistance (<6 BPI [0.24 blows per mm]).

The Energy Approach method was found to provide excellent evaluations of pile capacity under all conditions. The method is, therefore, proposed to be used in the field for instantaneous capacity determination. The predictions of this method were found, on the average, to provide more accurate evaluations than the sophisticated office methods, especially for records obtained at the end of initial driving. The Energy Approach is, therefore, also proposed to be used as an independent tool to evaluate the office methods.

102 CONCLUSIONS

The research investigated four general correlations:
(1) Damping parameters vs. soil type.
(2) Load test results vs. office methods (CAPWAP/TEPWAP) predictions using the parameter $\mathrm{K}_{\mathrm{sw}}=$ load test capacity/office method prediction.
(3) Load test results vs. Energy Approach predictions using the parameter $K_{\mathrm{sp}}=$ load test capacity/Energy Approach prediction.
(4) CAPWAP/TEPWAP vs. Energy Approach using the parameter $K_{\text {ew }}=$ office method prediction/Energy Approach prediction that is also equivalent to $K_{\text {ew }}=K_{\text {sp }} / K_{\text {sw }}$

The conclusions based on the graphical and statistical analyses presented in the preceding chapters are summarized as follows:

1. Viscous damping does not truly represent the physical phenomena through which energy is lost and, hence, cannot be viewed as intrinsic to soil type.

Figure 21 presents the relationship between the back-calculated case-damping parameter, J_{c} (which was required to provide the actual measured static resistance), to the soil type at the tip. No correlation can be observed in this figure. Moreover, in many cases, the obtained damping parameters are negative, which has no physical meaning.

Figures 120 and 121 present the relationship between soil conditions and Smith side and tip damping for all PD/LT and PD pile-cases combined (581 cases combining figures 22 and 104, 23 and 105, respectively). Figures 120 and 121 present the damping parameters that were used in the analyses in order to obtain the best signal match between the calculated and measured signals. No correlation was found between the damping parameter used in these analyses and soil type.
2. The capacity predictions for small displacement piles resulted in higher accuracy and substantially lower scatter for both dynamic methods when compared to the predictions and the scatter obtained for large displacement piles. (See, for example, figures 29 and 30 compared to figures 32 and 33).

Figure 120. Side soil conditions vs. Smith side
damping based on CAPWAP/TEPWAP results for 581 pile-cases.

Figure 121. Tip soil conditions vs. Smith tip damping based on CAPWAP/TEPWAP results for 581 pile-cases.

Small and large displacement piles can be defined according to area ratio ($A_{R}>350$ for small displacement piles and $A_{R}<350$ for large displacement), as presented and discussed in sections 4.4 and 8.5.4 (see figures 70 and 72).
3. The above conclusion is reinforced by the excellent correlations that were obtained between the prediction methods for the small displacement pile cases (see tables 12 and 16). These observations show that energy is lost mainly due to soil inertia as a result of the mobilization of the soil mass at the pile tip. The correlations of section 8.3 (see tables 5 and 8) indicate that soil type has very little effect on the accuracy of the Energy Approach predictions. As such, correlations were examined based on pile type, driving resistance, and time of driving (see section 8.5).
4. Correlations between driving resistance and dynamic predictions do not lead to definitive conclusions (see table 9). Figures 73 through 102 and reanalysis of the prediction coefficients on the basis of blow counts between 0 to 10 BPI (0.39 blows per mm) and over 10 BPI indicate the following trends:

- Small displacement piles with high driving resistance will result in a small loss of energy due to soil inertia and, therefore, more accurate predictions, as the actual pile resistance is similar to the maximum resistance during driving. The results of both methods of analysis performed well for that category. For example, the mean and standard deviation for 25 small displacement piles ($\mathrm{A}_{\mathrm{R}}>350$) driven in the range of 0 to 10 BPI (0.39 blows per mm) is $\mathrm{K}_{\mathrm{sw}}=1.360, \sigma_{\mathrm{x}}=0.5581$ and $\mathrm{K}_{\mathrm{sp}}=0.939, \sigma_{\mathrm{x}}=0.2788$, compared to the 32 pile-cases driven under resistances higher than 10 BPI (0.39 blows per mm) that resulted in $\mathrm{K}_{\mathrm{sw}}=1.159, \sigma_{\mathrm{x}}=0.4422$ and $\mathrm{K}_{\mathrm{sp}}=$ $0.929, \sigma_{x}=0.2185$.
- Large displacement piles with low driving resistance will result in a large loss of energy due to soil inertia and less accurate predictions, as the actual pile resistance is the difference between the maximum pile resistance during driving and the large energy loss. (For this category, the Energy Approach predicts well for EOD and over-predicts for BOR while the office methods seem to under-predict for EOD and improve with time.) For example, the mean and standard deviation for 101 large displacement pile cases $\left(\mathrm{A}_{\mathrm{R}}<350\right)$ driven at the range of 0 to 10 BPI (0.39 blows per $\mathrm{mm})$ is $\mathrm{K}_{\mathrm{sw}}=1.353, \sigma_{\mathrm{x}}=0.4879$ and $\mathrm{K}_{\mathrm{sp}}=0.906, \sigma_{\mathrm{x}}=0.3257$, compared to the 43 pile-cases driven in resistances higher than 10 BPI (0.39 blows per mm), which resulted in $K_{\mathrm{sw}}=1.601, \sigma_{\mathrm{x}}=0.6279$ and $\mathrm{K}_{\mathrm{sp}}=0.951, \sigma_{\mathrm{x}}=$ 0.2961 .

5. The End of Driving (EOD) condition is of special interest as it represents the ability of the methods to predict the capacity during driving and to evaluate for the most common state. The predictions for EOD were examined, in particular, in figures 44 (and 46), 45 (and 47), 75, 76, and tables 5, 6, 8, and 9. The data clearly indicate very good predictions and correlations of the Energy Approach under all categories with better performance for small displacement piles. Fo: example, 97 piles at EOD resulted in $K_{\text {sw }}=1.478, \sigma_{x}=0.6167$ and $K_{\text {sp }}=1.023$, $\sigma_{x}=0.3073$. These numbers improved for the subgroup of 29 small displacement piles showing $\mathrm{K}_{\mathrm{sw}}=1.252, \sigma_{\mathrm{x}}=0.5616$, and $\mathrm{K}_{\mathrm{sp}}=0.935, \sigma_{\mathrm{x}}=0.2616$. The large mean and standard deviation ratios for the $K_{s w}$ coefficient suggest limitations of the office analysis methods for all piles at the end of driving, but, in particular, for large displacement piles.

10.3 RECOMMENDATIONS

10.3.1 General

The recommendations are comprised of three parts. One part (sections 10.3.2, 10.3.3, and 10.3.4) describes the major prediction parameters and their statistical evaluation for the different pile-cases. The statistical evaluation is shown in the form of:

- Determination of the first-order best-fit line forced through zero (xcoefficient) and the measure of its accuracy through the coefficient of determination (r^{2}). Section 8.4.1 reviewed these parameters, mainly indicating that good correlation exists for $\mathrm{r}^{2} \geq 0.8$ and that $0.6 \leq \mathrm{r}^{2}<0.8$ indicates a moderate correlation only.
- Mean and standard deviation of the normal distribution. The mean represents the accuracy of the prediction (the ability to predict the measured ultimate static capacity) and the precision of the method refers to the scatter, which is represented by the standard deviation (the smaller the scatter, the lower the standard deviation).

In examining a certain pile-case category, it is advised to check both the x-coefficient and the mean as measures of the prediction accuracy and check the coefficient of determination and the standard deviation as measures of the scatter. It is also advised to look at the actual data presented in the scattergram associated with the particular case.

The second part of the recommendations refers to a discussion regarding the factors of safety that are associated with the predictions of the office methods and the Energy Approach. The third part lists several recommendations for the implementation of the methods and potential future improvements.

10.3.2 The Performance of the Office Methods (CAPWAP/TEPWAP)

Table 14 summarizes the major numerical parameters obtained through the analysis of data set PD/LT, concerning the performance of the office analyses. Only the pile-cases that contained a significant number of cases and/or could indicate an important influence were included. Table 14 indicates the following:

- For all piles at any time of driving in all soils, the office method underpredicts the actual static capacity by about 30 percent with a relatively large scatter. The scatter is mostly due to low accuracy in the prediction of cases involving large displacement piles (see LAA compared to SAA) and driving in clay (see AAC compared to AAS). It must be emphasized that a separate observation (not presented in this study) shows a clear improvement of the office method predictions with time. The accuracy of the method when analyzing records close to the time of load testing is, therefore, not evident in the data.
- The major single parameter controlling the accuracy of the method is the pile type. The accuracy of the method and its scatter reduces substantially for small displacement piles at any time of driving in all soils. It is further evident with the accuracy of the small displacement piles at the end of driving for which the office method presented excellent results with a mean and x -coefficient close to 1 and $\mathrm{r}^{2}=0.95$.

10.3.3 The Performance of the Energy Approach

Table 15 summarizes the major numerical parameters obtained through the analysis of data set PD/LT concerning the performance of the Energy Approach. Only the pile groups that contained a significant number of pile-cases and/or could indicate an important influence were included. The Energy Approach was proposed as the field method and, hence, the performance at the end-of-driving condition is emphasized. Table 15 indicates the following:

- For all piles at any time of driving in all soils, the Energy Approach overpredicts the actual static capacity by about 8 percent with a noticeable scatter that is, however, significantly smaller than that of the office method. As in the prediction of the office methods, the scatter is mostly due to lower accuracy in the prediction of cases involving large displacement piles (see LAA compared to SAA) and driving in clay (see AAC compared to AAS).
- Good correlation exists for predictions related to end of driving and small displacement piles. This is evident through the high coefficients of determination (r^{2}) and small standard deviations for these cases.
- The mean prediction ratio for all cases at the end of driving (AEA) is 1.0 . Higher accuracy is obtained for small displacement piles (SEA) compared to large displacement piles (LEA).

10.3.4 The Correlation Between the Office Methods and the Energy Approach

Tables 16 and 17 summarize the correlations obtained between the two methods under the different pile cases. Table 16 has a similar format to that of tables 14 and 15 and is based on the PD/LT data set. The parameters in table 16 referring to the end-of-driving conditions present excellent correlations between the methods, except for predicting large displacement piles for which each of the methods encountered its own difficulties.

Table 17 is based on the data combined in both data sets (PD and PD/LT) and, hence, refers to 609 pile-cases. The low correlations were again obtained for large displacement piles (LAA), especially when driven in clay (LAC).

The obtained relationships of tables 16 and 17 can perform as excellent guidelines when comparing the results of the office methods to that of the Energy Approach.

10.3.5 Factors of Safety and Risk Analysis

(a) General

Factor of safety in the current common use is the factor that we apply to our prediction in order to come up with an allowed capacity for which we would feel freedom from meaningful risk.

Risk is defined (see, for example, Briaud and Tucker, 1988) as the probability (P) that the predicted ultimate capacity $\left(Q_{p}\right)$ divided by the factor of safety (F.S.) exceeds the measured ultimate load $\left(\mathrm{Q}_{\mathrm{m}}\right)$:

$$
\begin{equation*}
R=P\left[\left(\frac{Q_{p}}{F . S .}\right)>Q_{m}\right] \tag{41}
\end{equation*}
$$

The calculated K-values (K_{sw} and K_{sp}) as presented throughout this research study are the ratio of $K=Q_{m} / Q_{p}$, using the above notation. The risk can therefore be rewritten in the following format:

$$
\begin{equation*}
R=P[K \cdot F . S .<1] \tag{42}
\end{equation*}
$$

where $K=K_{\text {sw }}$ or $K_{\text {sp }}$.
As the construction cost is directly related to the factor of safety, we are interested in several forms of that factor:

- What is the minimum factor of safety that will allow us absolute safety?
- What is the risk associated with any factor of safety?
- What is the actual factor of safety when considering the inaccuracy of the prediction method?

These aspects are discussed in the following section.
(b) Absolute Safety Based on Data Set PD/LT

The data sets were searched for the worst over-prediction ratio. The absolute factor of safety was defined as the one that should have been used in this case in order to make certain that the allowed capacity would not exceed the ultimate capacity. The results of the analysis based on this approach are summarized in table 18 in the following manner:

Columns 1 through 3 detail the method of analysis, pile-case category, and number of cases related to that category.

Column 4 indicates the minimum K-factor (K_{sw} or K_{sp}) in the related data set. The $\mathrm{K}_{\min }$ value is associated with the maximum over-prediction ratio.

Column 5 is the inverse ratio of $\mathrm{K}_{\text {min }}$, indicating the absolute factor of safety that would have been needed in this case in order to guarantee that the allowed capacity would not exceed the ultimate static capacity.

Column 6 takes into consideration the average built-in risk or safety that exists in each of the methods. The office methods under-predict on the average, such that the mean K_{sw} for the AAA category is 1.367 . Using, in addition, a factor of safety of 1.75 means that the actual mean factor of safety is 1.367×1.75, which results in 2.40 . The Energy Approach is over-predicting on the average. The mean $K_{\text {sp }}$ for the AAA category is 0.925 , which means that when employing a factor of safety of 2.44 , the actual mean factor of safety is $0.925 \times 2.44=2.26$.

Column 6 indicates that although the Energy Approach requires somewhat higher factors of safety in order to cover the worst over-prediction case, the actual factor of safety that is used when considering the accuracy of the method is smaller than that of the office

Table 14. Linear regression and statistical analysis of Ksw for selected PD/LT pile-cases.

[^4]Table 15. Linear regression and statistical analysis of Ksp for selected PD/LT pile-cases.

[^5]Table 16. Linear regression and statistical analysis of Kew for selected PD/LT and PD pile-cases.

Pile- Case Group	Number of Cases	Kew = CAPWAP or TEPWAP/Energy Approach			
	Linear Best Fit through Zero	Normal Distribution			
AAA	609	0.670	0.727	0.753	0.203
LAA	404	0.638	0.609	0.721	0.215
LAS	210	0.617	0.690	0.720	0.175
LAC	93	0.600	0.447	0.687	0.198
SAA	120	0.772	0.937	0.807	0.147
SAS	49	0.754	0.950	0.783	0.155
SAC	29	0.752	0.914	0.740	0.126

Pile-case legend: displacement, and $S=$ small displacement.

- first letter denotes pile type: $A=$ all piles, $L=$ large
- second letter denotes time of measurement: $A=$ anytime
$E=e n d$ of driving, and $B=b e g i n n i n g$ of restrike.
- third letter denotes soil type: $A=a l l$ soils, $S=$ sand and silt, $C=$ clay and till, and $R=$ rock.
Pile-case legend: XXX
Table 17. Linear regression and statistical analysis of Kew for selected PD/LT pile-cases.

PileCase Group	NumberofCases		Kew = CAPWAP or TEPWAP/Energy Approach			
			Linear Best Fit through Zero		Normal Distribution	
			x-coefficient	r-squared	mean	standard deviation
AEA	95	all	0.699	0.861	0.743	0.179
SEA	39	>350	0.762	0.947	0.813	0.147
LEA	56	<350	0.598	0.398	0.695	0.184

[^6]methods. This situation is especially clear for the end-of-driving cases where a factor of safety of 2.0 actually means an average factor of safety of 2.0 for all cases.

Column 7 examines the maximum factor of safety that will be employed for the worst under-prediction ratio, using this approach. Since the maximum under-prediction ratio for the office method is $\mathrm{Ksw}_{\text {max }}=4.42$, the maximum actual factor of safety that will result from using an F.S. of 1.75 is $1.75 \times 4.42=7.74$.

The small scatter for the Energy Approach is again demonstrated for all the end-ofdriving predictions where the use of a factor of safety of 2.0 will result in a maximum conservative factor of safety of only 4.24.

Table 18. Absolute factor of safety based on data set PD/LT.

Method of Analysis	Pile- Case Group	No. of Cases	$K_{\min }$	Factor of Safety (F.S.)	F.S. \times mean K	F.S. $\times K_{\max }$
CAPWAP/TEPWAP	AAA	206	0.57	1.75	2.40	7.74
CAPWAP/TEPWAP	AEA	97	0.57	1.75	2.59	7.74
Energy Approach	AAA	208	0.41	2.44	2.26	5.28
Energy Approach	AEA	98	0.51	1.96	2.01	4.24

(c) Factor of Safety and the Associated Risk Based on the Actual Data

The PD/LT data set was used to prepare the relationships between the applied factor of safety and its associated risk as defined earlier. The procedure was described by Briaud and Tucker (1988) and contains the following steps:

1. Select an arbitrary F.S. (factor of safety).
2. Calculate the risk of failure as the ratio between the number of piles in the data set for which $Q_{p} / Q_{m}>F$.S. over the total number of piles in that data base.
3. Repeat steps 1 and 2 for different F.S. values.
4. Plot the obtained relations between the applied factor of safety and the associated risk.

This analysis was carried out for three pile group cases (AAA, AEA, and SEA) for each of the two prediction methods. Figures 122, 124, and 126 are related to the office
method predictions and figures 123, 125, and 127 are related to the Energy Approach predictions. An accurate prediction occurs when the predicted value is equal to the failure value and, hence, associated with a risk of 100 percent for a factor of safety of 1 . A smaller risk with F.S. $=1$ reflects on under-prediction. For example, according to figure $122,77.7$ percent of the piles (AAA cases) will be safe using CAPWAP and F.S. $=$ 1 as the method under-predicts in most cases. In order to include the bias of the prediction method itself, the relationships between the applied factor of safety and the mean over-prediction ratio (or the mean actual factor of safety) were added in each chart. For example, figure 122 indicates that using a factor of safety of 1.2 for all cases of the office method, will result in a risk of 5.8 percent. This factor of safety, however, is actually equivalent to a factor of safety of 1.64 when considering the mean of $\mathrm{K}_{\mathrm{sw}}=$ 1.367 for the AAA pile-case group.

Table 19 summarizes numerically, based on figures 122 through 127, a few representative factors of safety and their associated risks. The numerical values show the accuracy and reliability of the Energy Approach, especially for the end-of-driving analysis. The use of a factor of safery of 1.6 , for example, will be associated with an actual F.S. of 1.6 and a risk of 2.1 percent for the Energy Approach, while the same factor of safety means an actual F.S. of 2.3 and risk of 1.1 percent for the office method.

(d) Factor of Safety and the Associated Risk Based on the Probability Distribution Function

The risk associated with the factor of safety can also be evaluated based on the probabilistic models. The models associated with the distribution of the predictions were presented in section 8.4.

The use of these evaluations can be done in the following way:

$$
\begin{equation*}
R=P[K \times F . S .<1]=P\left[K<\frac{1}{F . S .}\right] \tag{43}
\end{equation*}
$$

using $\mathrm{x}=1 / \mathrm{F}$. S.
for a normal distribution

$$
\begin{equation*}
P[K<x]=P\left[U S\left(\frac{x-m_{x}}{\sigma_{x}}\right)\right]=F_{u}\left(\frac{x-m_{x}}{\sigma_{x}}\right)=F_{u}(u) \tag{44}
\end{equation*}
$$

for a log-normal distribution

$$
\begin{equation*}
P[K<x]=P[\ln K \leq \ln x]=F_{k}\left(\frac{\ln \left(x / m_{x}\right)}{\sigma_{\ln x}}\right) \tag{45}
\end{equation*}
$$

where F_{u} is obtained directly from the standard tables of the normal distribution function.

For example, using the log-normal distribution for K_{sp} for AAA pile-cases (see figure 66):

$$
\mathrm{m}_{\mathrm{r}}=0.8818, \sigma_{\operatorname{lnx}}=0.3094
$$

F.S.	1/F.S.	\mathbf{U}	$\mathbf{F}_{\mathbf{u}}$	$\mathbf{R}=\mathbf{P}[\mathrm{K}<1 / \mathrm{F} . S]$.	\mathbf{R} (table 19)
1.0	1	0.4066	0.6591	65.9%	67.8%
1.6	0.625	-1.2517	$1-0.8944$	10.6%	14.4%
1.8	0.556	-1.4932	$1-0.93189$	6.8%	7.7%
2.0	0.500	-1.8337	$1-0.96712$	3.3%	4.8%
2.5	0.400	-2.5549	$1-0.996$	0.4%	0%

These numbers fit very well with the risk presented in figure 123 and table 19.

10.3.6 Recommendations for Implementation

I. The simplicity of the Energy Approach formulation together with its high accuracy at the end of driving makes it an ideal method of analysis to be used in the field and as a check for the office methods.

The following factors of safety are recommended to be used with the Energy Approach predictions:

- F.S. $=2.50$ for all piles in all cases (AAA, mean $\left.K_{\text {sp }}=0.93\right)$.
- F.S. $=2.00$ for all end-of-driving cases (AEA, mean $\left.K_{\mathrm{sp}}=1.00\right)$.
- F.S. $=2.00$ for all small displacement piles $\left(A_{R}>350\right)$ in all cases (SAA, mean $K_{\text {万p }}=0.94$).

The following recommendations are made for improving the use of the Energy Approach method:

1. Implement the Energy Approach as part of the Pile-Driving Analyzer (PDA) routine analysis. This will ensure more accurate field predictions that may be further enhanced by using $\mathrm{K}_{\text {sp }}$ correction factors based on the pile group cases as shown in the previous section.
2. The limited accuracy of the displacements obtained from acceleration measurements brought the use of the blow count for set evaluation. It was found that, in many cases, blows are counted along a distance of a foot rather than an inch, even during the final penetration. Whenever records of blows per foot were replaced by measurements along 1 in (25.4 mm), a significant improvement was obtained for the estimated set and, as a result, in the accuracy of the Energy Approach predictions. It is proposed to remediate the problem by measuring blows along 1 in (25.4 mm) of penetration together with the following recommendations.
3. The Energy Approach can be improved by analysis based on average blows per inch, average $\mathrm{E}_{\mathrm{mAx}}$, average $\mathrm{D}_{\mathrm{MAX}}$, and average capacity for the last inch during driving rather than for a single blow.
II. Both methods of analysis, the simple Energy Approach and the stress-wave-based formulation, require the recording of the pile displacement with time. Currently, we either double integrate the acceleration measurements to obtain displacement with time, or integrate once, using the velocity in the numerical solution of the wave equation. Direct and accurate displacement measurements can be currently obtained, instead of using accelerometers. Such measurements based, for example, on laser devices will enhance substantially the accuracy of all dynamic methods.

Table 19. Factor of safety and associated risk.

Prediction	CAPWAP/TEPWAP			Energy Approach		
Pile Case	AAA	AEA	SEA	AAA	AEA	SEA
No. of Cases	206	95	39	208	96	39
F.S.	1.00	1.00	1.00	1.00	1.00	1.00
Actual F.S.*	1.37	1.44	1.15	0.92	1.00	0.90
Risk (\%)	22.3	16.8	41.0	67.8	60.4	41.0
F.S.	1.20	1.20	1.20	1.20	1.20	1.20
Actual F.S. ${ }^{\text {a }}$	1.64	1.73	1.38	1.11	1.20	1.08
Risk (\%)	5.8	7.4	25.6	42.3	31.3	25.6
F.S.	1.40	1.40	1.40	1.40	1.40	1.40
Actual F.S. ${ }^{\text {a }}$	1.91	2.02	1.61	1.30	1.40	1.26
Risk (\%)	2.4	3.2	5.1	22.6	9.4	5.1
F.S.	1.60	1.60	1.60	1.60	1.60	1.60
Actual F.S. ${ }^{\text {a }}$	2.19	2.31	1.84	1.48	1.60	1.44
Risk (\%)	1.0	1.1	2.6	14.4	2.1	2.6
F.S.	1.80	1.80	1.80	1.80	1.80	1.80
Actual F.S.'	2.46	2.59	2.07	1.67	1.80	1.62
Risk (\%)	0	0	0	7.7	1.0	0
F.S.	2.00	2.00	2.00	2.00	2.00	2.00
Actual F.S.*	2.74	2.88	2.30	1.84	2.00	1.80
Risk (\%)	0	0	0	4.8	0	0
F.S.	2.5	2.5	2.5	2.5	2.5	2.5
Actual F.S.*	3.43	3.60	2.88	2.30	2.50	2.25
Risk (\%)	0	0	0	0	0	0

Actual F.S. $=$ F.S. \times mean OPR
mean OPR = mean Over-Prediction Ratio

Figure 122. Risk analysis of CAPWAP/TEPWAP predictions for 206 PD/LT pile-cases in all types of soil.

Figure 123. Risk analysis of Energy Approach predictions for $208 \mathrm{PD} / \mathrm{LT}$ pile-cases in all types of soil.

Figure 124. Risk analysis of CAPWAP/TEPWAP predictions for 95 PD/LT pile-cases in all types of soil at EOD.

Figure 125. Risk analysis of Energy Approach predictions for $96 \mathrm{PD} / \mathrm{LT}$ pile-cases in all types of soil at EOD.

Figure 126. Risk analysis of CAPWAP/TEPWAP predictions for 39 small displacement $\left(A_{R}>350\right) \mathrm{PD} / \mathrm{LT}$ pile-cases in all types of soil at EOD.

Figure 127. Risk analysis of Energy Approach predictions for 39 small displacement ($A_{R}>350$) PD/LT pile-cases in all types of soil at EOD.

APPENDIX A - DATA SET PD/LT

Table 20. Site and pile information for PD/LT.

No.	Plo-Case Number	Peter. No.	Locstion	$\begin{aligned} & \text { Ple } \\ & \text { Type } \end{aligned}$	Pile Area $\left(i n^{2}\right)$	Length Betow Gauges (in)	Penterr Depth	Soll Type	
								Side	Tp
1	FN1-EOD	1-480	Omans NE	HP10x42	12.40	72.0	720	sity clay	14
2	FN1-8081	$1-480$	Omana NE	HP10x42	12.40	72.0	721	silly clay	U
3	FN1-60P2	1480	Omana NE	MP10x42	12.40	72.0	73.0	silty clay	บH
4	FND-EOD	H80	Omans NE	PSC12'sq	14.00	62.0	65.0	silty clay	till
5	FNL-BOR	H60	Omaha NE	PSC12'sq	144.00	620	65.0	ally clay	011
6	FN3-EOD	$1-480$	Omaha NE	PSC14'sq	196.00	62.0	56.0	sulty clay	$t 11$
7	FN3-BOR	H480	Omane NE	PSC14*sq	198.00	62.0	56.0	salty ciay	tIII
8	FNA-EOD	1480	Omana NE	CEP12.75	19.20	68.0	66.0	silty clay	tul
9	FN4-BOR	$1-480$	Omana NE	CEP12.75	19.20	68.0	60.0	silty clay	till
10	FUEEOD	SHe 1	lowa	HP14×89	26.10	117.5	114.1	clayey sand	sand
11	FA-BOR	Sne 1	lowa	HP14x89	28.10	117.5	114.1	clayey sand	send
12	FB-EOD	Ste 1	lowa	CEP 14'	21.20	97.5	94.1	clayey sand	sand
13	FIB-BOR	Sne 1	lowa	CEP 14*	21.20	97.5	94.1	clayey sand	send
14	FO1-EOD	Cms S-1	Ondahoma	CEP 26	67.70	60.3	60.2	sility sand	sility sand
15	FO1-B0R	Cms S 1	Oxanoma	CEP 26°	67.70	60.3	60.2	silty sand	sitty sand
18	FO2-EOD	Clm S-1	Ofdahoma	PSC24'00t	470.90	61.5	63.0	silty sand	sifty sand
17	FO2.80R	Cms S-1	Ordahoma	PSC24*0C1	470.90	61.5	63.1	sity sand	silty sand
18	FO3-EOD	Clm S-2	OXdahoma	HP14x117	34.40	110.0	03.7	sa-st-ctay	clayey sand
10	FO4-EOD	Cmm S-2	Oxdehoma	RC24's9	576.00	60.3	45.0	sa-st-clay	clayey eand
20	FO4-80R	$\mathrm{Cum} \mathrm{s}-2$	Ordahoma	RC24'sq	576.00	60.3	55.8	sa-sh-clay	clayey sand
21	FOR1-EOD	Alsea	Oregon	PSC20\%sq	393.00	131.0	125.5	sand \& silf	siltstone
22	FOR1-BOR	Asea	Oregon	PSC20'sq	393.00	131.0	125.6	sand \& sttr	allistone
23	FM5-E00	Site A	Maine	CEP 18'	27.50	117.3	99.0	clay \& sand	sand
24	FM5-BOR	Sine A	Maine	CEP 18'	27.50	101.0	89.1	clay \& sand	sand
25	FM17-EOD	SHe B	Maine	CEP ${ }^{18}$	27.50	77.8	71.1	UU	世
28	FM17-80R	Ste B	Maine	CEP 18*	27.50	77.8	71.3	814	311
27	FME3-EOD	Ste B	Malne	CEP ${ }^{18}$	27.50	58.8	50.7	till	311
28	FME3-BOR	$\sin 0$	Maine	CEP $18{ }^{\circ}$	27.50	56.8	50.8	4 H	all
29	FCT-EOD	Crook	Cotorado	CEP12.75*	9.82	33.5	33.5	sand	sand
30	FCi-bor	Crook	Colorado	CEP12.75*	8.82	33.5	33.9	sand	sand
31	FC2-EOD	Crook	Colorado	CEP12.75*	8.82	27.5	26.5	sand	sand

Table 20. Site and pie information for PD/LT (continued).

No.	Pro-Case Number	Roter. No.	Location	$\begin{aligned} & \text { Plie } \\ & \text { Type } \end{aligned}$	Pue Area$\left(\mathrm{n}^{2}\right)$	Length Below Gauges (ii)	Panetr Depth (i)	Soll Type	
								Side	TP
32	FC2-80R	Crook	Colorado	CEPY2.75*	9.82	27.5	26.9	sand	sand
33	FMI1-EOD	FR 115	Mrasoun	CEP 14*	18.10	83.0	83.0	sand-graver	sand
34	FMIT-80R	PL 115	Missour	CEP 14*	16.10	83.0	83.1	sand-gravel	sand
36	FMR-EOD	PR. 115	Missour	CEP 14*	18.10	81.5	81.0	sand-graver	sana
36	FM12-BOR	FLi 115	Missoun	CEP 14*	16.10	61.5	61.0	sand-gravel	sand
37	FWAEOD	$3^{\text {rd }}$ lake	Washingtn	CEP 48'	111.3	152.0	24.8	till-graver	till
38	FWA-BOR	$3^{\text {rd }}$ take	Washingtn	CEP 48'	111.3	1520	24.9	thl-gravat	뱁
38	FWE-EOD	$3^{\text {rd }}$ take	Washingtn	CEP 48'	111.3	140.0	109.0	Hegraval	till
40	FWB-80R	$3^{\text {rd }}$ Lake	Washingtn	CEP 480	111.3	140.0	109.3	Uli-graver	till
41	FAI-EOD	H165	Alabama	PSC $18^{\circ} \mathrm{sq}$	324.00	63.0	84.0	silty sand	slity sand
42	FA1-BOR1	1165	A	PSC 18'sq	324.00	63.0	84.5	sulty sand	alty sand
43	FA1-BOR2	$1-165$	Alabama	PSC 18'sq	324.00	63.0	84.8	slity sand	slity sand
4	FA2-EOD	$1-165$	Alabama	PSC 18889	324.00	73.0	75.0	shty sand	alty sand
45	FA2-BOR1	+165	Alabama	PSC 180 ${ }^{\circ} \mathrm{sq}$	324.00	73.0	75.3	silty sand	silty sand
46	FA2-BOR2	+165	Alebama	PSC 18989	324.00	73.0	75.5	silty sand	silty sand
47	FA3-EOD	+166	Alebama	PSC 24*sq	489.00	63.0	64.0	sulity sand	sulty sand
48	FA3-BOR1	+165	Alabama	PSC 24*sq	489.00	63.0	64.1	silty sand	silty sand
49	FA3-BOP2	1165	Alamams	PSC 24'sq	489.00	83.0	64.5	slity sana	sinty sand
50	FAM-EOD	1-166	Alabama	PSC 24'sq	489.00	73.0	75.0	silty sand	silty sand
51	FA4-BOR1	H165	Alsbama	PSC 24'sq	489.00	73.0	75.1	slity sand	silty sand
52	FAl-80R2	+165	Alshama	PSC 24'sq	489.00	73.0	75.2	silty sand	allty sand
53	FA5-EOD	165	Alabama	PSC 36'sq	888.00	70.0	73.0	silly sand	silty sand
54	FA5-BOR	-165	Alabams	PSC $36 \times \mathrm{sq}$	888.00	70.0	73.1	sllty sand	sily sand
55	FV15-E00	WRJ	Vermont	HP1 4x 73	21.40	920	75.0	sit-d.sand	sand graver
58	FV15-BOR	WRL	Vermont	HP14x73	21.40	82.0	75.8	siln-d.sand	sand gravel
57	FVIO-EOD	WRJ	Vermont	HP14×73	21.40	92.0	90.0	slit-d.sand	sand gravel
58	FV10-BOA	WRJ	Vermont	HP14×73	21.40	92.0	50.4	sith-d.sand	sand gravel
50	FMN2-EOD	Pi 18	Minnesota	HP14×73	21.4	97.0	86.0	sa-si-ctay	fat clay
60	FMN2-BOA	Pe 18	Minnesota	HP14×73	21.4	97.0	96.1	sa-st-clay	fat clay
81	FP5-EOD	Troga	Penn.	Monotube	7.00	34.5	23.6	sancy gm	sandy gm
02	FP5-60n	Troga	Pern.	Monotube	7.00	34.5	23.8	sandy gra	sandy gm

Table 20. Site and pile information for PD/LT (continued).

No.	Pite-Cese Number	Rater. No.	Lecation	$\begin{aligned} & \text { Ple } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { Plis } \\ & \text { Area } \\ & \left(n^{2}\right) \end{aligned}$	Length Betow Gauges (i)	Penetr Deplh (in)	Soll Type	
								Side	Tip
63	FKGEOD	R1. 27	Kentucky	PSC14*sq	196.00	72.0	34.7	sont cley	dense
64	FKG-8OR	R 27	Kentucky	PSC14'sq	198.00	72.0	34.7	soft clay	dense
65	FL3-EOD	RL415	Loutstana	PSC24*sq	463.00	100.0	84.3	gity clay	sity sana
68	FL3-80R1	Pt. 415	Loulsiana	PSC24*sq	483.00	100.0	84.3	suty clay	silty sand
87	FL3-80P2	PL415	Laulslana	PSC24 ${ }^{\text {sq }}$ (463.00	100.0	84.3	silty clay	slity sand
68	CA1-EOD	SHe C-L	0.s. Ont	CEP 9.6'	15.42	1720	154.3	s-sa-ctay	31-89-4ill
69	CA1-BOR	Stie C-L	O.S. Ont	CEP 9.6 ${ }^{\text {P }}$	15.42	1720	154.3	strea-clay	st-sa-till
70	CA2-BOR	Stie C-L	O.S. Ont	CEP 9.6'	15.42	112.5	110.1	81-89-clay	stsa-ctay
71	CA5-BORI	Ste A	N.Y. Ont	CEP11.73*	11.98	67.0	83.2	fill-sand	sand
72	CA5-8ORE	Stue A	N.Y. Ont	CEP11.73 ${ }^{\circ}$	11.98	67.0	65.6	fill-sand	sand
73	CA3/8-BOR	Marina	Bar. Ont	CEPT0.24 ${ }^{\circ}$	8.74	73.8	64.4	sanc-sild	sin
74	CA24-80R	Stu D	Tor. Ont	CEP1275'	14.54	38.6	38.6	mand	sand
75	CAP-80R1	Ste E	Hem. Ont	CEP12.75*	14.54	00.2	54.0	sa-s-4ill	sin-till
76	CAB-BORO	Ste E	Ham. Ont	CEP1275'	14.54	60.2	54.0	3e.sh-dil	1 slif-till
77	CAE-EOR	Stue E	Ham. Ont	CEP1275*	13.55	60.2	54.0	80-3-4itu	santin
78	WC3-EOD	Whte	Forda	PSC24'sq	578.00	48.4	27.3	la.d. c and	dense
79	WC3-B0R1	White	Forida	PSC24*sq	576.00	48.4	27.5	1s.-d.sand	dense
80	WC3-BOR2	Whas	Forida	PSC24*99	576.00	37.5	27.5	m.-d.asand	dense
81	WC8-EOD	Whate	Forica	PSC24'sq	576.00	39.5	28.3	ts. -d.sand	dente
82	WCo-BORt	White	Forida	PSC24'sq	576.00	39.5	28.5	6s.d.sand	dense
83	WC8-BOR2	White	Forida	PSC24"99	576.00	28.0	27.5	ts.-d.sand	dense
84	WBOBOR	West	Forida	PSC30'sq	645.50	130.0	128.5	ctayey sand	clayay
85	WB15-BOR	West	Forida	PSC30'sq	645.50	105.0	103.6	sand	all-clay
88	T1/A-EOO	antishore	barmel	OEP 60	212.00	138.5	528	clcr sand	sarsd
87	T1/A-ALT	Offshore	brael	OEP $60{ }^{\circ}$	212.00	173.9	53.8	cher sand	sand
88	T1/B-EOD	Offishore	Israel	OEP $60{ }^{\circ}$	21200	218.2	101.7	cler sand	sand
89	T2/A-EOD	Offshore	sraed	OEP 48'	111.33	117.1	52.5	cker sand	sand
90	T2/B-EOD	Offshore	Isreat	OEP 48*	111.33	260.5	182.1	crer sand	sand
91	35-1-BOR	C.M.R	Toronto	HP12x74	21.80	60.1	48.5	ct-sa-shI	silty sand
92	35-4-80R	C.N.R	Toronto	CEPT275*	9.80	52.2	48.2	C-se-s/b	sity gand
93	35-5-80R	C.N.R	Toronto	HP12x74	21.80	100.2	90.5	ct-sat-shin	silty dand

Table 20. Site and pile information for PD/LT (continued).

No.	Pro-Cese Number	Reter. No.	Location	$\begin{aligned} & \text { Pite } \\ & \text { Type } \end{aligned}$	$\begin{aligned} & \text { Pile } \\ & \text { Area } \\ & \left(\mathrm{m}^{2}\right) \end{aligned}$	Lengin Below Gauger (it)	Penetr Depin (it)	Soll Type	
								Side	$\pi \mathrm{m}$
94	36-8-80R	C.N.R	Torome	CEPr275 ${ }^{\text {² }}$	9.80	105.4	90.0	C-8a-8in	alty sand
86	35-7-80R	C.N.R	Toronto	T. Tinber	157.00	4.4	41.6	ct-se-3/il	silty sand
96	36-10-8OR	C.N.R.	Toronto	PSC 12'sq	144.00	50.0	46.0	c-se-sid	silty sand
97	E2-BOR	DF	Raleigh	PSC 12'sq	144.00	43.5	44.5	C-89-8ila	C-89-8in
98	e3s-BOR	Mehonld	Penn.	HP12 553	15.50	88.8	66.0	sand-sill	sllit
99	LBZ1-80R	Ste A	M	PSC 20\%99	400.00	36.0	36.0	sin-sand	silt-sand
100	LPEO-BOR	Ste B	MA	PSC 20's9	400.00	51.0	55.0	sand	sand
101	LCE-BOP	Sue C	NA	PSC 20\%sq	400.00	115.0	86.0	ct-8e-sin	ct-ea-silt
102	UN18-80R	Sta D	MA	PSC 20'sq	400.00	155.0	94.0	ct-se-silt	C+-89-sil
103	LE37-80R	She E	NA	PSC 10'sq	100.00	00.0	50.0	C-S-sa-silil	Umestone
104	LE64-BOR	Stue F	M	PSC 10\%sq	100.00	60.0	58.0	C-sa-sth	se-ct-814
105	ST1-EOD	Site H	Ftorida	PSC 18*sq	324.00	68.0	44.0	-	carb sand
108	ST2.EOD	Ste P	Farida	PSC 18'sq	324.00	62.0	40.0	-	cart sand
107	STPEOR	$1-604$	Virginia	PSC 54'sq	770.00	131.0	109.0	-	Bult-clay
108	STMe-EOD	Castiotn	Now Yorx	CEP 10°	5.80	40.0	38.0	cilt-cend	sti-sand
109	GZA3-EOD	Civc	Prow. Pa	CEP13.38*	20.30	143.0	125.5	silt-sand	gr-8a-s/it
110	GZ45-EOD	Civie	Prov. Pl	CEP $8.75{ }^{\circ}$	15.50	138.0	93.8	silt-sand	till-shale
111	G746-E00	Cruc	Prov. RI	CEP 9.75	15.50	171.0	156.0	sllt-sand	gr-sa-sin
112	G7BBC-EOD	Cavic	Prov. Rl	CEP 10°	18.40	116.0	89.5	shit-band	sth
113	G78P2.EOD	Cave	Prov, P:	CEP13.38'	20.30	143.7	108.0	sult-sand	gr-sa-alk
114	GZE8-EOD	Cuvc	Prow. P1	CEP13.38 ${ }^{\circ}$	20.30	97.0	82.3	sill-sand	51-se-4il
115	GZ2-EOO	Doer tas.	Boston MA	CEP 14*	21.20	87.0	87.0	till-cley	till
116	G2O5-EOO	Deer 4	Boaton Ma	CEP 14'	21.20	87.0	54.0	Ulli-cley	un
117	GZCCS-EOD	Deer ts.	Boston MA	CEP 14*	21.20	117.0	80.0	Ulli-clay	till
118	G72-EOD	Deer m.	Bowion MA	CEP 14'	21.20	117.0	83.0	till-clay	[111
119	CZPr.4-EOD	Deer B	Boston MA	CEP 14*	21.20	105.0	60.5	till-cley	till
120	G2P11-EOD	Deer tis.	Boston MA	CEP 14*	21.20	106.0	56.5	Ult-clay	냅
121	G2P12-EOD	Deer 12	Boaton MA	CEP $14{ }^{\circ}$	21.20	115.5	69.0	til-clay	UR
122	G7822-EOD	NWS	Coth Neck	OEP 30	54.00	138.0	118.0	sand-clay	sin-clay
123	GZWI-EOR	Water	Vermont	CP12 75'	14.60	126.0	99.5	silty sand	sand
124	A54-EOD	HiCC	Australia	RCC10.8*sq	117.22	67.9	67.6	sulty clay	clay

Table 20. Site and pile information for PD/LT (continued).

No.	Pro-Cese Number	Pater. No.	Location	$\begin{aligned} & \text { Ple } \\ & \text { Type } \end{aligned}$	Ple Area$\left(\mathrm{in}^{2}\right)$	Length Below Ganges (it)	Penetr Depth (ii)	Soll Type	
								Slde	np
125	A54-80A	HICC	Australla	PRC10.8*sq	117.22	67.9	67.0	slity clay	clag
128	A147-E00	HICC	Australla	RC10.8089	117.22	67.9	67.6	silty elay	clay
127	A147-BOR	HICC	Australia	RC10.8*8q	117.22	67.9	67.6	sity cley	cley
128	GF19-EOD	She 1	Pgh. PA	HP10×42	12.30	58.5	49.5	grat-snd-sn	stale
120	GF110-EOD	Stue 1	Pgh. PA	HP12x74	21.70	57.0	49.7	gM-and-an	shale
130	GF2O2-EOD	She 2	Pgh. PA	HP12x74	21.70	67.0	61.1	gru-snd-sh	shale
131	GF224-EOO	She 2	Pgh. PA	Monotube	9.70	53.0	29.6	gri-snd-sin	9\%M-3nd-sh
132	GF312-EOD	Stue 3	Pgh. PA	HP12x74	21.70	33.0	28.2	and-gm-sin	shale
133	6F313-EOD	Sthe 3	Pgh. PA	HP40x57	16.70	35.0	31.5	and-gmi-shl	ctaysione
134	GF412-EOD	Stre 4	Pgh. PA	HP12074	21.70	48.5	33.8	gra-sind-sil	claystone
136	GF413-EOD	SHe 4	Pgh. PA	HPY0x57	16.70	34.2	34.6	gru-sind-st	claystone
138	GF414-EOD	Ste 4	Pgh. PA	HPHOX57	16.70	47.5	34.7	gen-enc-sh	clayatone
137	GF415-EOD	Ste 4	Pgh. PA	HP12x74	21.70	47.5	34.1	grut-snd-8ht	claystone
138	EP62-EOD	Outava	Canada	CP 9.625 ${ }^{\text {a }}$	15.54	-	62.3	si-be-cl	tir
139	EF167-80R	Otawa	Canada	CP 8.625*	15.54	-	68.9	Stra-ct	tull
140	A3-EOD1	Apalach	Forde	VC 24'sq	402.90	94.0	63.4	clayey sand	sand
141	A3-80R1	Apalach	Forids	VC 24-sq	462.90	94.0	83.4	clayey sand	sand
142	A3-E002	Apalach	Frorda	VC 24'sq	462.90	94.0	90.3	clayey sand	sand
143	A3-80P2	Apalach	Forde	VC 24*sq	462.90	94.0	90.4	clayey sand	sand
144	13-8083	Apalach	Forida	VC 24'sq	462.90	89.3	90.6	clayey sand	clayey sand
145	A14-001	Apalsch	Frorida	VC 24'sq	46290	107.0	45.0	sandy clay	sand
148	A14-002	Apalach	Ftorlda	VC 24*sq	462.90	107.0	47.0	sandy clay	sand
147	A14-BOR1	Apalach	Forida	VC 24*sq	462.90	107.0	58.5	clayey sand	pand
148	A14-80R2	Apelach	Florida	VC 24*sq	46290	75.0	58.8	clayey sand	cand
149	A25-EOD	Apalach	Porda	VC 24'sq	462.90	106.0	55.1	clayey sand	tand
150	A25-80R1	Apalach	Forida	VC 24'sa	462.90	106.0	55.2	clayey sand	amad
151	A23-8082	Apatach	Frorda	VC 24:sq	462.90	59.3	55.4	clayey sand	sand
152	A25-BOP3	Apelach	Frorica	VC 24'sq	462.90	59.3	55.5	clayey sand	sand
153	A16-EOD	Apalach	Foride	PSC18'sq	324.00	65.0	60.6	sandy clay	sand
154	A18-BORI	Apalach	Forida	PSC18'sq	324.00	65.0	60.6	sancy clay	sand
155	A18-80F2	Apalach	Forida	PSC18'sq	324.00	62.2	61.0	sandy clay	tand

Table 20. Site and pile information for PD/LT (continued).

No.	Pin-Case Number	Roter. No.	Lecstion	$\begin{aligned} & \text { Plle } \\ & \text { Type } \end{aligned}$	Plis Area$\left(n^{2}\right)$	Lengin Below Gaugen (il)	Ponetr Depth (t)	Soll Type	
								Słde	Tip
156	AAT-EOD	Apalach	Fronda	VC 24*sq	46290	91.0	520	Clay	sand
157	M1-BOR	Apalacn	Fionida	VC 24*sq	46290	91.0	52.0	clay	gend
158	M1-BOP?	Apalach	Forida	VC 24*sq	462.90	81.5	52.8	clay	sand
150	A101-EOD	Apalach	Forida	VC 2489	462.90	88.0	61.8	ctay	clayey sand
160	A101-B0R1	Apalact	Forida	VC 24*sq	462.90	88.0	61.8	Clay	clayey sand
181	A101-BOR2	Apalach	Forkda	VC 24*sq	462.90	71.5	62.1	clay	clayey sand
162	A133-EOD	Apalach	Frorida	VC 24*sq	462.90	130.0	103.9	ciayey sand	sandy clay
183	A133-BOR	Apalach	Foride	VC 24*9q	462.90	115.7	104.9	clayey sand	sandy clay
184	A145-EOD	Apalach	Forica	VC 24"sq	462.90	132.0	102.9	clayey sand	sand
185	A145-80R1	Apalach	Frorida	VC 24*9q	462.90	132.0	102.9	clayey sand	sand
188	A145-80R2	Apaiach	Forida	VC $24{ }^{\circ} \mathrm{sq}$	462.90	115.1	103.0	ciayey sand	sand
187	CB3-80R	Choctw	Forida	PSC24'sq	576.00	77.9	77.0	clayey sand	sand
188	CB3-BORL	Choctw	Forida	PSC24'sq	576.00	79.9	77.8	clayay sand	sand
160	CB5-80R	Choctw	Forida	VC 30sq	645.53	87.0	53.1	claygy sand	sand
170	CB5-BORL	Choctw	Forida	VC 30\%99	845.53	61.1	54.0	clayoy sand	sandy clay
171	CB11-BORL	Choctw	Foricas	VC 30sq	845.53	97.6	85.7	clayey sand	clayey sand
172	CB11-EORL	Choctw	Florida	VC 30³q	645.53	97.6	85.8	clayey sand	clayey sand
173	CB17-80R1	Choctw	Florida	VC 309q	645.53	97.0	77.7	clayoy sand	clayey sand
174	CB17-80R2	Choctw	Forida	VC 30'sq	645.53	97.0	77.8	clayey sand	clayey sand
175	CB17-80RL	Choctw	Fiorida	VC 30\%sq	645.53	90.0	77.9	ciayey sand	clayey sand
178	CB17-DRL	Cnoctw	Foricia	VC 30-89	645.53	90.0	78.2	cisyey sand	clayey sand
177	CB23-BOR	Choctw	Forida	VC 30sq	645.53	96.0	80.3	clayey sand	sand
178	CB23-BORL	Choctw	Forida	VC 30% sq	645.53	96.0	827	clayey sand	sand
179	CB29-80RL	Choctw	Forida	vC 30-sq	645.53	96.1	84.5	clayay sand	clayey sand
180	CB29-EORL	Choctw	Forida	VC 30'sq	645.53	95.1	84.5	clayey sand	clayey sand
181	CB35-80R1	Choctw	Forica	VC 30'sq	645.53	97.1	78.5	clayey sand	clayey sand
182	CB35-8OF2	Choctw	Forica	VC 30\%89	645.53	97.1	78.9	clayey sand	clayey sand
183	CB35-8ORL	Choctw	Fortia	VC 30'sq	645.53	89.1	79.1	clayey sand	clayey sand
184	CBA1-EOR	Choctw	Forida	VC 30\%sq	645.53	1023	64.7	sancy clay	sandy clay
186	CB41-BOR	Choctw	Forida	VC 30'sq	645.53	101.3	64.7	sandy clay	sandy clay
188	CB41-BORL	Choctiw	Forida	vC 308 sq	645.53	79.0	65.4	sandy clay	sandy clay

Table 20. Site and pile information for PD/LT (continued).

No.	Pro-Case Number	Poter. No.	Location	$\begin{aligned} & \text { Pile } \\ & \text { Type } \end{aligned}$	Plo Area$\left(n^{2}\right)$	Lenglh Below Gauges (i)	Penctr Depth (it)	Sout Typ	
								Side	TP
187	C826-EOD	Choctw	Forka	PSC24*sq	578.00	80.1	62.5	clayey sand	sand
188	C826-BOR	Choctw	Forida	PSC24'ga	578.00	80.1	62.6	clayey sand	sand
189	Caze-EOR	Choctw	Forida	PSC24*89	576.00	80.1	84.8	clayay sand	sandy clay
180	CB26-BORE	Choctw	Forida	PSC24"8q	576.00	65.0	65.0	sandy clay	sandy clay
191	33P1-EOD	Sto P	Ontarlo	HP 12x74	21.60	120.9	114.4	ct-sa-sth	sliny send
192	33P4-80R	Ste P	Ondario	HP 12x74	21.80	120.9	114.4	Cl-sa-sin	slity gend
183	33P1-EOR	Shap	Onlarto	HP 12x74	21.80	120.9	114.4	C+-80-sill	sulty sand
194	33P2-E00	She P	Ontario	CP 12.75'	9.80	148.8	107.2	ctsa-sill	slity sand
195	33P2-BOR	Ste P	Ontario	CP 1275	9.60	111.0	107.2	c-s-s-sill	suty sand
198	33P2-EOR	She P	Ontarto	CP 12.75'	9.80	111.0	107.2	c-18s-stit	shly sand
197	33P4-EOD	She P	Ontario	PSC 12-sq	144.00	65.0	54.2	cr-ma-siln	cr-sild-til
198	33P5-E00	She P	Ondarto	\$14 Timber	144.8	43.0	28.4	ct-se-silh	ch-sititil
109	TRCO2-EOD	SHe R	Ontarto	HP 12×74	21.80	225	20.1	sand	밴
200	TRDE2-BOR	Sue R	Ontario	HP 12×74	21.80	22.5	20.1	sand	till
201	TRE22-EOD	SHe R	Ortarto	HP 12x74	21.80	30.0	25.7	sand	rock
202	TRE22-80R	She F	Ontario	HP 12074	21.80	30.0	25.7	sand	rock
203	TRP5X-EOD	SHe R	Ontarlo	HP 12x53	15.60	25.0	25.2	sand	rock
204	TRPSX-BOR	Sue R	Ontario	HP 12×53	15.80	25.0	25.2	sand	rock
205	TR131-BOA	Ste R	Ontarto	CP 7.063	7.90	28.8	NA	sand	rock
206	TRAHEOR	Sue S	Brunswick	HP 12089	26.50	138.0	126.0	clayey sill	sandy gravel
207	TRBH-BOR	Stie S	Brurswick	HP 12×89	28.50	114.3	102.1	clayey silt	sandy gravol
208	TRBREOR	Sue S	Enunswick	CP 12.75 ${ }^{\text { }}$	12.40	110.0	104.0	clayey sin	sandy gravel

$1 \mathrm{in}=25.4 \mathrm{~mm}$
$1 \mathrm{in}^{2}=645.2 \mathrm{~mm}^{2}$
$1 \mathrm{ft}=0.305 \mathrm{~m}$

Table 21. Pile driving and dynamic measurements for PD/LT.

No.	Pioccese Number	Hemmer туpe	Rated Harnmer Energy (1 p- fi)	Detivered Energy (cdp-if)	Blow Count (BPI)	$\begin{aligned} & \text { impecence } \\ & \text { EAVC } \\ & (\mathrm{cdps} / \mathrm{h} / \mathrm{s}) \end{aligned}$	$v_{i m p}$ ($1 / 3$)	$\begin{aligned} & F_{\mathrm{lmp}} \\ & \text { (kdps) } \end{aligned}$	$\frac{\text { VEA/C }}{F}$	$D_{\text {max }}$ (n)
1	FN1-EOD	D-30	54.2	17.30	2.83	22.13	13.24	3224	0.909	. 793
2	FNW1-80R1	D-30	54.2	18.42	8.00	2213	13.24	315.2	0.935	. 813
3	FN1-80P2	0-30	54.2	20.15	15.00	2213	13.04	308.9	0.834	. 837
4	FNE-EOD	0-30	54.2	12.70	3.50	60.49	7.35	462.0	0.963	. 444
5	FAES-BOR	D-30	54.2	1235	5.00	60.49	8.38	508.9	0.004	. 400
6	FN3-EOD	D-30	54.2	8.90	8.17	85.89	6.14	558.0	0.943	. 386
7	FNi3-BOR	D-30	54.2	18.20	6.00	85.89	7.88	681.1	0.979	. 459
8	FNA-EOD	D-30	54.2	15.55	2.50	34.26	12.97	478.5	0.929	. 531
θ	FNA-BOR	D-30	54.2	17.40	5.00	34.26	13.23	475.8	0.953	. 517
10	FIAEOD	K-25	51.5	23.38	3.33	46.60	14.90	667.8	1.039	. 686
11	FUABOR	K-25	51.5	18.88	1.83	46.60	15.00	657,0	1.062	. 558
12	FEB-EOD	K-25	51.5	25.40	5.83	37.80	15.10	555.3	1.027	. 689
13	FIB-EOR	K-25	51.5	22.47	2.50	37.80	15.30	548.2	1.054	. 675
14	FO1-EOD	DE110	93.5	18.06	5.67	120.80	5.40	788.7	0.827	. 413
15	FO1-BOR	DE110	93.5	37.47	5.00	120.80	8.80	1223.8	0.873	. 541
16	FO2-EOD	DE110	93.5	18.28	5.08	199.10	3.90	805.9	0.963	. 453
17	FO2-80R	DE110	90.5	31.37	1200	199.10	5.70	1114.0	1.018	. 450
18	FO3-EOD	DE110	93.5	16.40	18.67	61.40	8.60	489.5	0.828	. 825
10	FO4-EOD	DE110	93.5	8.81	11.87	214.60	2.50	575.3	0.933	. 269
20	FO4-60R	DE110	93.5	22.73	1.00	214.60	4.70	1011.7	0.997	. 362
21	FORT-EOD	D-46-23	105	30.11	9.17	159.00	0.10	046.0	1.025	. 838
22	FORT-BOR	0-40-23	105	23.77	77.33	159.00	5.80	818.1	1.004	462
23	FMGSEOD	K-45	92.8	27.00	1.29	49.08	10.73	550.5	0.957	1.033
24	FMS-EORY	K-45	92.8	40.20	3.00	49.08	13.30	658.2	0.992	. 981
25	FM17-EOD	K-45	82.8	39.50	1.42	49.06	11.14	590.8	0.928	1.105
28	FM17-BOR	K-45	928	36.50	3.00	48.08	13.17	697.7	0.928	. 788
27	FM20-E00	K-45	82.8	33.30	1.33^{4}	48.08	11.37	559.0	0.988	1.180
28	FMES-80R	K-45	92.8	31.00	200	49.08	10.57	508.1	1.021	1.247
29	FC1-EOD	KC-25	51.5	15.47	$3.50{ }^{*}$	17.54	13.40	2728	0.862	. 790
30	FCT-BOR	KC-25	51.5	16.18	$3.80{ }^{*}$	17.54	13.40	276.2	0.851	. 808
31	FCO-EOD	KC-25	51.5	18.07	$3.67{ }^{\circ}$	17.54	14.90	290.0	0.901	. 606

- - Denotes blow count (BPI) based on blows per foot.

Table 21. Pile driving and dynamic measurements for PD/LT (continued).

Ho.	PHo-Case Number	Harmer Type	Paifed Hammer Energy (1dp-li)	Delkered Erorgy (dp-1)	Blow Courd (BPI)	$\begin{aligned} & \text { Impedence } \\ & \text { EA/C } \\ & \text { (} \mathrm{djps} / \mathrm{t} / \mathrm{B} \text {) } \end{aligned}$	$\begin{aligned} & V_{\text {tmo }} \\ & (\mathrm{n} / \mathrm{s}) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{lmp}} \\ & \text { (ldps) } \end{aligned}$	$\frac{\text { YEA/C }}{\text { F }}$	$\mathrm{D}_{\text {max }}$ (In)
32	FC2-BOR	KC-25	51.5	13.66	4.00*	17.54	13.10	288.1	0.857	. 630
33	FM11-EOD	ICE 640	40.0	11.00	$3.0{ }^{*}$	28.73	8.10	250.3	0.919	738
34	FM11-80R	ICE-640	40.0	12.00	3.00	28.73	8.80	304.5	0.830	. 032
35	FME-EOD	HCE-640	40.0	11.68	$1.42{ }^{*}$	28.73	7.10	230.1	0.888	. 881
30	FMR-BOR	CEE-640	40.0	13.58	3.00	28.73	9.00	285.7	0.905	. 834
37	FWA EOD	Con300	90.0	44.90	47.00	198.62	9.80	1925.	1.011	. 920
38	FWA-BOR	Con300	90.0	33.30	7.00	198.02	8.80	1708.	1.023	550
39	FWQ-EOD	Con300	90.0	47.20	30.00	198.62	8.50	1715.	0.990	. 630
40	FWB-BOR	Con300	90.0	39.30	15.00	198.62	7.60	1518.	0.906	670
41	FA1-EOD	K-45	92.8	17.53	1.50*	145.72	4.37	628.7	1.013	. 727
42	FA1-80R1	K-45	928	9.19	7.00	145.72	3.60	547.9	0.957	. 335
43	FA1-80R2	K-45	828	21.84	7.00	145.72	7.30	1074.	0.990	. 481
44	FA2-EOD	K-45	92.8	21.22	$3.50{ }^{*}$	145.72	3.98	639.0	0.908	. 611
45	FA2-BOR1	K-45	928	2207	7.00	140.52	6.90	1024.	0.948	. 430
48	FA2-BOR2	K-45	92.8	20.80	5.00	145.72	6.70	1025.	0.952	. 357
47	FA3-EOD	K-45	928	22.79	$2.83{ }^{*}$	221.53	3.31	729.1	1.006	848
48	FA3-80R1	K-45	928	15.22	6.00	218.99	3.41	7824	0.859	. 324
49	FA3-8OR2	K-45	928	18.31	5.00	221.53	5.30	1199.	0.979	. 274
50	FAM-EOD	K-45	82.8	19.08	0.42*	221.53	3.56	7824	1.007	. 437
51	FAT-BOR1	K-45	928	16.82	8.00	219.93	5.19	1108.	1.030	. 255
52	FM-BOR2	K-45	828	20.42	18.00	219.93	6.78	1488.	1.013	. 283
53	FA5-EOD	D-62-22	153.2	37.08	$7.67{ }^{*}$	403.88	5.10	2106.	0.978	. 446
54	FA5-BOR	D-62-22	153.2	45.51	5.00	403.88	7.40	3016.	0.991	. 288
56	FV15-E00	MKT 358	22.0	10.00	4.17*	38.19	10.40	403.2	0.985	. 475
56	FV15-80R	MKT-358	220	12.23	9.00	38.19	14.20	522.8	1.037	. 643
57	FV10-E00	MKT 358	22.0	10.98	$2.87{ }^{*}$	38.19	10.70	417.8	0.978	. 490
58	FVIO-BOR	MKT 36B	22.0	13.90	200	38.19	16.30	609.1	1.022	. 675
59	FANE-EOD	ICE-90S	90.0	28.29	$1.63{ }^{*}$	38.18	15.00	627.6	0.913	. 879
60	FMN2-8OR	ICE-g0S	00.0	29.14	25.00	38.19	16.50	675.6	0.932	. 802
61	FP5-EOD	D-12	22.0	7.58	$5.42{ }^{*}$	12.49	13.80	177.4	0.972	. 677
62	FP5-BOR	D-12	22.0	7.55	13.00	12.49	14.90	1925	0.967	. 570

' - Denotes blow count (BPI) based on blows per foot.

Table 21. Pile driving and dynamic measurements for PD/LT (continued).

No.	P10-Cans Number	Hammer Type	Rated Hammer Energy (kjp-1)	Delvered Enorgy (Nop-n)	Brow Count (BPI)	$\begin{aligned} & \text { Impedence } \\ & \text { EA/C } \\ & (\mathrm{kps} / \mathrm{n} / \mathrm{s}) \end{aligned}$	$\begin{aligned} & v_{\text {imp }} \\ & (\pi / 8) \end{aligned}$	$\begin{aligned} & F_{\text {lmp }} \\ & \text { (idps) } \end{aligned}$	$\frac{\text { VEA/C }}{\text { F }}$	$D_{\text {max }}$ (in)
63	FKGEOD	L8-520	31.0	8.31	23.25*	80.23	4.28	353.5	0.971	. 468
64	FKG-8JP	L8-520	31.0	7.78	18.00	80.23	4.55	373.3	0.978	. 407
65	FLSEOD	Vut020	60.0	14.60	$1.67{ }^{*}$	203.74	3.28	678.3	0.985	. 757
68	FL3-BOR1	Vut-020	60.0	17.03	400	203.74	3.70	811.4	0.929	. 433
67	Fl3-BOP2	Vut-020	00.0	14.43	11.00	203.74	3.70	795.4	0.946	. 297
68	CAI-EOD	B-400	48.0	20.32	21.33	27.87	15.75	4322	1.016	1.051
68	CAI-BOR	8-400	46.0	18.98	40.00	27.87	14.44	427.9	0.941	1.025
70	CA2-BOR	9-400	48.0	18.74	14.00	27.87	15.08	424.1	0.992	. 883
71	CA5-BOR 1	35karop	38.7 min	30.48	25.00	27.38	15.08	341.8	0.944	1.312
72	CA5-80R2	49kdrop	54.2min	31.44	11.00	21.38	13.45	307.3	0.936	1.298
73	CA3/8-BOR	ICE 405	40.0	19.03	4.23	15.60	15.42	275.6	0.873	1.001
74	CA24-BOR	D-12	24.0	8.83	50.00	13.44	14.11	215.7	0.879	. 500
75	Cab-bori	D-30-13	60.0	41.23	10.00	25.93	17.33	494.4	0.908	1.185
78	CA6-8OR2	0-30-13	86.0	42.68	6.67	25.93	17.91	502.7	0.924	1.230
77	CAB-EOR	0-30-13	88.0	37.60	8.00	25.93	16.83	417.7	1.045	1.156
78	WC3-EOD	Dermag	106.0	17.50	8.33	288.75	4.23	1122.8	1.013	. 452
79	WC3-80R1	Delmag	105.0	18.90	9.33	268.75	4.25	1979.6	0.968	. 412
80	WC3-BOF?	Delmag	105.0	17.89	6.67	268.75	3.47	10424	0.895	. 403
81	WCE-EOD	Delmeg	105.0	17.60	5.00	265.88	4.47	1191.0	0.998	. 508
82	WCB-BOR1	Delmag	105.0	18.24	8.00	265.88	4.50	1224.8	0.977	. 489
63	WCE-BOR2	Delmag	105.0	26.28	6.67	265.88	5.04	1330.1	1.007	. 667
84	WBO-8OR	Con300	90.0	39.87	6.67	271.52	8.42	1748.2	0.997	. 383
85	WB15-80R	Con300	90.0	34.70	5.00	289.50	5.84	1533.7	1.025	. 375
88	T1/AEOD	D-55	125.0	44.99	7.37	378.57	8.01	2967	1.022	. 260
87	TI/AALT	0-56	125.0	151.50	2.29	378.57	12.50	4423	1.070	. 830
88	T1/B-EOD	M-2500	NA	172.73	2.03	378.57	12.70	4787	1.004	. 870
89	T2/A-EOD	D-55	125.0	50.62	4.83	198.75	9.40	1891	0.988	. 570
90	T2/B-EOD	N-2500	NA	168.68	5.08	198.75	13.60	2814	0.961	1.169
91	35-1-BOR	B-400	46.0	13.10	1.83.	38.93	10.20	423.0	0.939	. 600
92	35-4-BOR	B-400	46.0	23.20	5.56*	17.50	17.94	377.0	0.833	1.010
93	36-5-BOR	B-400	46,0	17.70	$10.31{ }^{\text {* }}$	38.93	14.50	584.0	0.967	. 590

* Denotes blow count (BPI) based on blows per foot.

Table 21. Pile driving and dynamic measurements for PD/LT (continued).

No.	Puo-Case	Mermer Typa	Prited Hammer Energy (kp-ft)	Dellvered Enorgy $\text { (} \mathrm{dp} \text { - } \mathrm{n} \text {) }$	BKW Count (BPI)	$\begin{aligned} & \text { Impedence } \\ & \text { EAVC } \\ & (\mathrm{kPs} / \mathrm{th} / \mathrm{s}) \end{aligned}$	$\begin{aligned} & V_{\mathrm{kmp}} \\ & (\mathrm{~m} / \mathrm{s}) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{lmpp}} \\ & (\mathrm{kdps}) \end{aligned}$	$\frac{\text { VEAC }}{}$	$D_{\max }$ (In)
94	36-6-8OR	B-400	48.0	28.10	18.87°	17.50	18.60	372.0	0.875	1.130
95	35-7-80R	B-225	29.0	0.90	$2.53{ }^{*}$	18.87	10.70	217.0	0.935	. 810
98	36-10-BOR	B-400	48.0	11.10	0.00	60.56	9.10	5220	1.055	. 460
97	E2-BOR	Conmes	28.5	15.01	10.00	64.20	7.98	527.7	0.968	. 392
98	63S-80R	ICEE40	40.0	12.13	4.50	30.34	10.85	327.1	1.008	. 597
9	LE21-80R	VUL-510	50.0	13.47	$4.00{ }^{\circ}$	169.40	4.60	821.7	0.948	. 373
100	L820-80R	VUL-510	50.0	14.77	8.00	161.80	5.90	968.0	0.988	. 311
101	LC3-80R	D-48-23	107.0	39.40	7.00	181.90	8.30	1437.0	0.835	. 666
102	UN16-BOR	D-40-23	107.0	28.00	10.00^{*}	161.90	5.90	1087.0	0.679	. 579
103	LE37-80R	VUL-01	15.0	5.40	10.00	38.80	5.74	228.3	0.977	. 434
104	LE84-BOR	VUL-01	15.0	0.80	5.50	38.80	8.10	247.2	0.957	422
105	ST1-EOD	D-36-13	84.0	33.13	242^{*}	123.00	8.30	1035.4	0.988	. 848
108	ST2-EOD	D-30-13	84.0	33.03	3.42°	132.20	8.33	881.1	0.973	. 898
107	ST-BOR	CN5300	150.0	45.70	$7.86{ }^{\circ}$	339.10	8.10	2076.0	0.908	442
108	ST4E-EOD	VUL-1	15.0	5.50	267^{*}	10.35	10.00	102.5	1.010	. 790
109	GZA3-EOD	ICE-840	40.0	16.12	20.00	36.20	10.80	3621	1.079	. 884
110	G7A5-EOD	ICE-840	40.0	17.38	6.00	27.80	10.20	300.9	0.042	1.082
111	G7Ab-EOD	ICE-640	40.0	13.40	15.00	27.70	8.10	219.8	1.021	1.076
112	GZBBC-EOD	ICE-840	40.0	17.67	20.00	37.80	8.90	362.2	0.929	. 888
113	GZBP2-EOD	ICE-640	40.0	9.57	20.00	38.20	8.80	258.7	0.952	. 710
114	G7B6-EOD	ICEE40	40.0	15.91	11.00	27.70	10.90	344.5	0.878	. 834
115	GZZS-EOD	ICE1070	72.6	28.73	4.20	37.80	13.30	533.8	0.942	1.000
116	GZOS-EOD	ICE1070	728	23.71	4.20	37.80	14.20	568.1	0.945	. 878
117	G2CC5-EOD	ICE1070	728	34.05	5.40	37.80	14.60	590.6	0.934	1.180
118	GZ2-EOD	ICE1070	726	25.81	9.00	37.80	12.90	500.6	0.974	. 984
118	G7P14-EOD	ICE1070	728	25.68	5.00	37.80	11.40	502.3	0.858	. 882
120	G2P11-EOD	ICE1070	72.6	18.13	5.30	37.80	11.20	471.5	0.898	. 782
121	GZPI2-EOD	ICE1070	726	34.64	12.60	37.80	12.70	499.5	0.961	1.155
122	G2822-EOD	MH72B	135.0	55.17	8.50	111.00	11.60	1326.1	0.971	859
123	GZW1-EOR	k-25	47.0	1279	1200	28.10	1221	339.3	0.939	. 776
124	A54-E00	Banuta	34.72	21.05	3.63	50.82	8.73	407.0	1.000	. 862

* Denotes blow count (BPI) based on blows per foot.

Table 21. Pile driving and dynamic measurements for PD/LT (continued).

No.	Pin-Case Number	Hammer Type	Fated Hammer Energy (ksp-fi)	Detvered Energy (10p-f)	Blow Count (BPI)	unpedence EAC ($\mathrm{d} \mathrm{dps} / \mathrm{n} / \mathrm{s}$)	$\begin{aligned} & V_{\mathrm{lmp}} \\ & (\mathrm{n} / \mathrm{s}) \end{aligned}$	$\begin{aligned} & \mathrm{F}_{\mathrm{imp}} \\ & (\mathrm{k} \mathrm{kps}) \end{aligned}$	$\frac{\text { VEA/C }}{F}$	$D_{\max }$ (in)
125	A54-BOR	Band	34.72	25.67	18.14*	50.82	10.40	491.0	1.077	. 827
128	A147-EOD	Banut	34.72	19.69	$1.95{ }^{*}$	48.44	8.14	404.2	0.976	. 880
127	A147-BOR	Banus	34.72	25.30	$6.68{ }^{*}$	47.20	9.14	437.3	0.987	. 780
128	GF10-EOD	L8-520	NA	9.40	20.00	29.60	10.55	3428	0.918	. 470
129	GF110-EOD	L8-520	NA	10.10	44.02	38.73	10.43	449.0	0.900	. 380
130	GF202-EOO	ICE640	NA	16.60	20.00	38.73	12.58	503.0	0.968	. 580
131	GF224-EOD	ICEE640	NA	21.00	5.00	17.31	15.70	258.9	1.050	. 900
132	GF312-EOD	Le-520	NA	6.86	18.00	38.73	9.16	398.1	0.809	. 285
133	GF313-EOD	LB-520	NA	10.05	20.00	29.80	10.81	352.1	0.915	. 403
134	GF412-EOO	L8-520	NA	8.49	39.00	38.73	8.61	408.8	0.911	. 359
135	GF413-EOD	LB-520	NA	9.07	39.00	29.80	10.74	360.4	0.888	418
136	GF414-E00	ICE-640	MA	16.47	48.00	29.80	11.32	3720	0.907	. 607
137	GF415-EOD	ICE 640	M	12.25	28.00	38.73	10.39	4428	0.909	. 455
138	EF62-EOD	030-32	52.0	27.29	6.10	27.85	17.01	5328	0.886	. 868
139	EF167-80R	030-32	520	25.81	6.10	27.99	15.29	478.8	0.892	. 827
140	A3-EOD1	Vut-0e0	60.0	18.74	6.00	209.66	3.52	743.8	0.902	. 548
141	A3-8081	Vut020	60.0	17.36	7.00	209.60	287	622.5	0.967	. 488
142	A3-EOD2	Vut-080	80.0	18.85	3.42	209.68	3.40	788.8	0.904	. 538
143	A3-BOR2	Vut-080	60.0	16.87	4.00	209.68	3.09	870.8	0.988	. 412
144	A3-80R3	Vut-00	60.0	21.93	30.00	209.68	3.63	753.4	1.010	. 337
145	A14-DD1	Con-300	90.0	29.81	8.75	291.07	3.52	1028.3	0.998	. 614
148	A14-002	Con-300	90.0	30.91	10.83	201.07	4.33	1218.8	1.034	. 597
147	A14-BORI	$\operatorname{Con} 300$	80.0	40.87	3.00	291.07	6.28	1679.8	1.085	. 544
148	A14-80R2	$\operatorname{Con} 300$	90.0	22.63	20.00	291.07	3.16	962.9	0.855	. 318
148	A2S-EOD	Vut-0en	60.0	2252	4.00	207.40	3.61	728.3	1.031	. 735
150	A25-8081	Vut-020	60.0	18.06	8.00	207.40	3.12	651.2	0.994	. 563
151	A25-BOR2	Vut-080	60.0	22.20	20.00	207.40	3.82	767.2	1.033	. 498
152	A25-80R3	Vut-020	60.0	22.13	20.00	207.40	3.78	753.8	1.040	. 521
153	A16-EOD	Vul-010	325	11.52	3.17	150.55	3.98	571.0	1.048	. 598
154	A16-80R1	Vut-010	325	10.78	6.00	150.55	3.60	534.0	1.015	. 457
155	A16-BOF2	Vu-010	325	9.04	7.87	150.55	3.19	457.0	1.051	. 299

- Denotes blow count (BPI) based on blows per foot.

Table 21. Pile driving and dynamic measurements for PD/LT (continued).

No.	Fiv-Case Number	Hemmer Type	Reted Hammer Energy (idp-h)	Detluered Energy (dp-n)	Blow Count (BPI)	impedence ENC ($\mathrm{ccpa} / \mathrm{n} / \mathrm{s}$)	$\begin{aligned} & v_{\mathrm{lmp}} \\ & (\mathrm{~m} / \mathrm{s}) \end{aligned}$	$\begin{aligned} & F_{\mathrm{imp}} \\ & \text { (Aps) } \end{aligned}$	$\frac{\text { VEA/C }}{F}$	$O_{\max }$ (an)
159	A1-EOD	Vut-002	60.0	21.94	$4.18{ }^{*}$	205.97	3.74	788.6	0.877	. 604
157	Al1-80R1	Vul-020	60.0	25.41	5.00	205.97	4.31	828.1	1.072	. 653
158	M1-80R2	Vut080	80.0	21.62	8.00	205.97	4.22	865.8	1.004	. 497
159	A101-EOD	Vut-020	60.0	20.96	$2.91{ }^{*}$	208.34	3.68	704.4	1.088	. 718
160	A101-BOFI	Vu-020	60.0	21.20	0.00	208.34	3.89	744.3	1.089	538
181	A101-80R2	Vut020	60.0	14.74	24.00	208.34	3.08	643.9	0.997	360
182	A133-EOD	Vut-020	60.0	18.04	5.25	21262	4.29	8320	1.098	. 854
163	A133-BOR	Vut-020	00.0	15.42	80.00	21268	3.47	756.1	0.978	. 354
164	A145-EOD	Vut-020	00.0	18.67	5.25	212.71	3.72	771.0	1.028	. 628
165	A145-BOR1	Vutozo	60.0	17.50	13.00	212.71	3.01	652.0	0.982	487
168	A145-BOR2	Vut-020	00.0	16.52	48.00	212.71	3.59	748.6	1.020	. 411
167	CB3-BOR	Vut-020	60.0	18.55	10.00	255.08	3.08	788.8	1.025	. 308
168	CB3-80RL	Vu-020	00.0	15.85	10.00	255.08	3.37	808.4	1.069	. 281
160	CB6-BOR	ICE200S	100.0	15.34	12.00	291.95	3.31	897.6	1.077	. 282
170	C85-80RL	ICEzO0S	100.0	24.97	16.00	291.96	4.25	1289.2	0.962	. 451
171	CB11-BORL	KCE2C0S	100.0	28.38	18.00	318.10	5.10	1634.8	0.982	. 322
172	C811-EORL	ICE200S	100.0	29.12	16.00	318.10	5.07	1630.5	0.989	. 320
173	C817-BOR1	ICE200S	100.0	29.19	16.00	297.16	4.95	1483.8	0.991	. 332
174	C817-BOP2	ICE200S	100.0	38.58	15.33	297.16	6.15	18225	1.003	.416
175	CB17-BORL	LCE200S	100.0	20.50	36.00	297.16	4.21	1258.9	0.995	. 300
178	CB17.DRL	ICE200S	100.0	28.85	16.50	297.16	4.84	1518.1	0.809	332
177	C823-BOR	KEE200S	100.0	14.07	8.00	309.73	2.64	8420	0.971	268
178	CB23-BORL	KCE200S	100.0	2288	1200	309.73	4.45	1407.5	0.979	. 337
179	C829-BORL	ICEROOS	100.0	8.89	28.00	288.28	211	639.3	0.961	211
180	CB2O-EORL	ICERO0S	100.0	16.92	20.00	288.28	3.51	1018.4	0.994	. 330
181	CB36-80R1	KE200S	100.0	31.33	$8.73{ }^{\circ}$	293.99	5.14	1394.6	1.084	. 637
182	CB35-80R2	ICEz00S	100.0	22.70	20.00	293.99	4.78	1340.4	1.048	. 333
183	CB35-BORL	ICE200S	100.0	19.60	13.00	293.99	4.19	1232.9	0.999	. 288
184	CB41-EOR	ICE200S	100.0	3218	15.17	302.20	5.03	1503.8	1.011	. 558
185	CB41-BOR	ICE200S	100.0	27.09	24.00	302.20	5.23	1555.1	1.016	. 489
188	CB41-BORL	ICEROOS	100.0	21.50	8.70	30220	4.62	1450.5	0.963	. 328

- Denotes blow count (BPI) based on blows per foot.

Table 21. Pile driving and dynamic measurements for PD/LT (continued).

No.	Pro-Case Number	Harmer Type	Rated Hammer Energy (dp - t)	Oativered Energy (dp-17)	8low Count (BP1)	$\begin{aligned} & \text { Impedence } \\ & \text { EA/C } \\ & (\mathrm{k} p \mathrm{p} / \pi / \mathrm{s}) \end{aligned}$	$\begin{aligned} & V_{\mathrm{imp}} \\ & (\mathrm{~m} / \mathrm{s}) \end{aligned}$	$\begin{aligned} & F_{\text {Imp }} \\ & \text { (dps) } \end{aligned}$	$\frac{\text { VEA/S }}{F}$	$\mathrm{D}_{\max }$ (in)
187	C82e-EOD	Vut020	60.0	15.53	4.75	281.84	287	754.2	0.998	. 461
188	C8ze-80R	Vu-020	60.0	22.67	5.45	281.84	3.62	947.4	1.001	. 507
189	CB2e-EOR	Vu-020	60.0	25.40	10.00	281.84	3.83	1034.1	0.970	. 537
190	CBEE-BORE	Vul-020	60.0	20.93	1200	261.84	3.50	937.9	0.977	. 368
197	33P1-EOD	B-400	46.0°	32.67	12.00	38.90	15.38	615.4	0.972	1.110
182	33P1-BOR	B-400	40.0	31.80	16.00	38.80	15.78	637.4	0.965	. 787
193	33P4-EOR	B-400	46.0	32.50	no bet	38.90	18.60	656.0	0.884	. 845
194	33 P 2 -EOD	8-400	46.0	32.84	39.00	17.54	18.44	281.3	1.025	1.859
196	$33 \mathrm{P2}$-BOR	B-400	46.0	30.97	76.00	17.54	16.68	317.0	0.922	1.418
100	33P2-EOR	8-400	48.0	31.24	no ser	17.54	17.28	337.8	0.885	1.374
197	33P4EOD	E-400	46.0	24.47	5.00	65.68	10.92	789.3	0.96,	885
198	33P5-EOD	8-225	29.0	8.41	10.67	24.56	8.75	240.9	0.890	. 527
198	TRD22-EOD	D-12	22.5	8.78	30.00	38.70	10.50	394.7	1.005	. 381
200	TRO22-80R	D-12	225	7.83	20.00	30.70	8.62	410.3	0.888	. 323
201	TRE22-EOD	D-22	40.0	15.19	2200	38.70	13.33	502.5	1.000	. 461
202	TRE22-BOR	D-22	40.0	15.18	10.00	38.70	14.28	601.7	0.896	. 415
203	TRP5X-EOD	D. 12	22.5	9.17	38.00	27.80	12.99	376.1	0.060	400
204	TRPPSX-BOR	D-12	22.5	9.70	25.00	27.80	12.13	361.5	0.933	. 435
205	TR131-BOR	D. 12	225	$7.10{ }^{*}$	4.00	14.10	11.10	158.0	0.981	. 759
208	TRAHEOR	8-225	29.0	9.50	no ser	46.70	10.30	489.0	0.990	. 404
207	TRAH-BOR	B-225	28.0	12.50	2.50	46.80	11.10	532.0	0.874	727
200	TRSPEEOR	B-225	29.0	8.80	4.67	21.80	12.90	306.0	0.918	468

- Denote blow count (BPI) based on blows per foot.
$1 \mathrm{kip}-\mathrm{ft}=1.36 \mathrm{kN}-\mathrm{m}$ $1 \mathrm{BPI}=0.039$ blows per mm $1 \mathrm{kip} / \mathrm{ft} / \mathrm{s}=14.59 \mathrm{kN} / \mathrm{m} / \mathrm{s}$ $1 \mathrm{ft} / \mathrm{s}=0.305 \mathrm{~m} / \mathrm{s}$ $1 \mathrm{kip}=4.448 \mathrm{kN}$ $1 \mathrm{in}=25.4 \mathrm{~mm}$

Table 22. Parameters of dynamic analysis for PD/LT.

Ho.	Plo-Case Number	$\begin{gathered} \text { Cose } \\ J_{c} \end{gathered}$	$\begin{gathered} \text { EA/C } \\ (\mathrm{k} p \mathrm{~s} / \mathrm{s} / \mathrm{f}) \end{gathered}$	2i/C (ms)	Tp Quake (In)	Side Ouake (in)	Tip Damping ($9 / \pi$)	Side Damping ($3 / \mathrm{ft}$)
1	FN1-EOD	0.884	2213	8.57	. 200	. 100	. 070	. 170
2	FN1-8081	1.584	22.13	8.57	. 100	. 100	400	. 130
3	FN1-BOR2	2.217	22.13	8.57	. 100	. 100	. 580	. 110
4	FND-EOD	0.356	60.49	9.55	. 200	.220	. 050	. 270
5	FN2-BOR	0.637	60.49	9.55	. 080	. 150	. 100	. 330
0	FN3-EOD	0.068	85.89	9.55	.120	. 060	. 290	. 800
7	FN3-BOR	0.283	85.89	9.55	. 210	. 070	. 340	. 310
8	FN4-EOD	0.377	34.26	7.85	. 150	. 120	. 050	. 150
9	FN4-BOR	0.703	34.26	7.85	. 100	. 110	. 050	. 180
10	FAAEOD	-0.454	46.60	13.98	. 300	. 170	. 479	. 049
11	FUABOR	-0.453	46.60	13.98	050	. 100	. 597	055
12	FIB-EOD	0.147	37.80	11.59	200	. 150	. 088	059
13	FIE-BOR	-0.025	37.80	11.59	. 150	. 100	. 129	. 088
14	FO1-EOD	0.133	120.80	7.17	. 280	. 100	. 139	. 136
15	F01-80R	0.720	120.50	7.17	. 280	. 100	. 092	. 082
18	FO2-EOD	-0.150	199.10	9.41	. 230	. 100	. 049	. 185
17	FO2-BOR	0.285	199.10	9.41	. 250	. 100	. 039	. 168
18	FOS-EOD	-0.828	61.40	13.08	. 050	. 080	. 675	. 082
19	FO4-EOD	-1.855	214.60	10.48	. 130	. 100	. 115	. 127
20	FO4-80R	-0.570	214.60	10.48	. 200	. 120	. 244	. 183
21	FOR1-EOD	-0.578	159.00	20.96	. 380	. 250	. 060	. 179
22	FOR1-BOR	-0.503	159.00	20.96	. 220	220	. 240	. 185
23	FM5-EOD	0.022	49.08	13.98	. 320	. 100	. 041	. 086
24	FMS-80R	0.677	49.08	12.02	. 380	. 100	097	. 074
25	FM17-EOD	0.438	48.08	9.26	. 530	. 090	. 077	. 076
28	FM17-80R	0.877	49.08	9.28	. 200	. 100	. 050	. 142
27	FME3-EOD	0.259	49.08	6.75	. 400	. 080	. 041	.454
28	FNE3-80R	0.146	49.08	6.75	1.000	. 210	. 045	. 090
29	FC1-EOD	-0.226	17.54	3.98	. 300	157	038	038
30	FC1-80R	-0.278	17.54	3.88	. 330	. 140	. 030	032
31	FC2-EOD	-0.229	17.54	3.27	330	. 148	. 041	. 028

- Determined from TEPWAP analysis.

Table 22. Parameters of dynamic analysis for PD/LT (continued).

No.	Pro-Case Number	$\begin{gathered} C=30 \\ d_{e} \end{gathered}$	$\begin{gathered} \text { EAC } \\ (\mathrm{kPP} / \mathrm{s} / \mathrm{n}) \end{gathered}$	2L/C (ms)	Пp Quake (in)	Slde Quake (in)	Tip Damping (s / f)	Side Damping ($3 / \pi$)
32	FC2-BOR	-0.383	17.54	3.14	. 330	. 150	. 029	. 024
33	FMI1-EOD	0.010	28.73	9.87	. 100	. 100	. 051	. 047
34	FMIT-BOR	0.113	28.73	9.87	. 150	. 100	. 098	. 017
36	FMR-EOD	0.198	28.73	7.32	. 140	. 100	. 030	. 080
30	FMR-BOR	0.348	26.73	7.32	. 150	. 100	. 056	. 030
37	FWA EOD	0.125	188.82	18.08	. 500	. 260	. 095	. 303
38	FWA-BOR	0.213	198.82	18.08	. 301	. 251	. 189	. 137
39	FWE-EOD	0.272	198.62	16.68	-	-	\bullet	-
40	FWE-BOR	0.141	198.62	16.68	-	-	-	-
41	FA1-EOD	0.043	145.72	8.40	. 100	. 100	. 123	. 234
42	FA1-BORI	0.241	145.72	9.07	. 200	. 060	. 368	. 387
43	FA1-8082	0.373	145.72	9.07	. 250	. 100	. 363	. 322
44	FA2-EOD	-0.108	145.72	10.51	. 420	. 100	. 098	215
45	FA2-BOR1	0.207	140.52	10.90	. 250	. 100	. 282	. 205
46	FA2-BOP2	0.577	145.72	10.51	. 170	. 130	. 323	. 327
47	FASTECD	-0.199	221.53	9.16	. 350	. 100	. 183	. 329
48	FA3-80.91	0.085	219.99	9.06	. 200	. 070	. 513	. 398
49	FA3-80,20	0.313	221.53	8.00	. 205	080	. 309	. 395
50	FAHECD	-0.204	221.53	10.43	. 250	. 100	. 153	. 297
51	FAH-80ht	0.331	218.83	10.51	. 120	. 080	. 334	. 390
52	FA-80R2	0.567	218.93	10.51	. 150	. 100	. 282	. 356
53	FA5-EOD	0.133	403.88	10.07	. 330	. 120	. 395	. 302
54	FA5-BCR	0.414	403.88	10.45	240	. 070	. 398	. 395
55	FV15-E00	0.085	38.19	10.95	. 300	.100	. 140	. 102
56	FV15-80R	0.000	38.18	10.95	300	. 100	. 424	. 089
57	FVIO-EOD	0.478	38.19	10.95	. 300	. 100	. 377	. 202
58	FVIO-BOR	0.143	38.19	10.95	. 340	. 125	. 276	. 164
59	FWNR-EOD	-0.223	38.19	11.19	. 500	. 180	. 079	. 104
60	FMN2-BOR	0.025	38.19	11.19	. 150	. 152	. 085	. 114
81	FPG-EOD	0.183	12.49	4.10	. 200	. 040	. 037	. 091
62	FP5-BCR	0.350	1249	4.10	. 190	. 045	. 030	. 088

- - Determined from TEPWAP analysis.

Table 22. Parameters of dynamic analysis for PD/LT (continued).

No.	$\begin{aligned} & \text { Plo-Cane } \\ & \text { number } \end{aligned}$	$\begin{gathered} \text { Cenes } \\ J_{c} \end{gathered}$	$\begin{gathered} \text { EA/C } \\ \text { (Aps/s/t) } \\ \hline \end{gathered}$	$2 \mathrm{~L} / \mathrm{C}$ (ms)	7p Cuake (n)	Skde Cuake Cuake (n)	7 p Damping (s / tr)	Side Damping (s / n)
69	FKG-EOD	-0.288	80.23	11.35	250	. 090	. 104	. 256
64	FKG-BOR	-0.189	80.23	11.39	. 140	. 060	. 113	. 282
05	FL3-EOD	0.119	203.74	15.04	. 400	. 100	. 246	. 269
68	Fl3-8081	0.149	203.74	15.04	. 250	. 150	. 378	. 392
67	Fl3-80R2	0.394	203.74	15.04	. 250	. 124	. 523	. 507
88	CAI-EOD	-0.120	27.87	20.47	. 140	. 140	. 089	. 083
0	CA1-BOR	-0.108	27.87	20.47	. 130	. 130	. 089	. 075
70	CA2-BOR	0.558	27.87	13.39	. 100	. 100	. 097	. 106
71	CA5-80R1	-0.354	21.58	7.97	. 362	. 100	. 012	. 088
72	CA5-BOP2	-0.400	21.58	7.97	. 327	217	. 035	. 024
73	CA3/8-BOR	0.765	15.80	8.78	. 374	. 276	. 098	. 118
74	CA24-BOR	0.295	13.44	4.59	. 177	. 118	. 113	. 077
75	CAE-BOR1	0.040	25.93	7.16	. 354	. 276	. 048	. 050
78	CAB-BOR2	-0.006	25.93	7.18	. 394	. 258	047	. 052
77	CAE-EOR	-0.347	25.83	7.18	. 335	. 256	.037	. 082
78	WC3-EOD	-0.063	268.75	6.80	. 400	. 100	. 168	. 068
78	WC3-80R1	-0.058	288.75	6.80	. 350	. 130	. 038	. 196
80	WCS-BOP2	-0.042	288.75	5.36	320	. 080	. 087	. 137
81	WCO-EOD	0.038	205.88	5.54	420	. 100	. 118	. 143
82	WCO-80R1	-0.044	265.88	5.54	.471	. 080	. 127	. 212
83	WC8-BOR2	-0.005	285.88	3.93	. 610	. 100	. 048	. 311
84	WB9-BOR	0.455	271.52	20.00	. 280	. 050	. 433	. 251
85	WB15-80R	0.457	288.50	18.28	. 225	. 060	242	488
80	T1/A-EOD	0.265	378.57	16.49	. 150	. 050	. 070	. 115
87	T1/A-ALT	0.257	378.57	20.70	. 200	. 100	. 157	. 078
88	T1/B-EOD	0.153	378.57	25.74	. 060	. 060	. 021	. 047
89	T2/A-EOD	0.346	196.75	13.94	. 150	. 040	235	. 087
90	T2/B-EOD	0.057	198.75	31.01	. 070	. 070	. 154	. 033
81	35-1-80R	0.088	38.93	7.15	. 250	. 100	. 114	. 043
92	35-4-80R	0.315	17.50	6.21	. 300	. 100	. 024	. 033
83	35-5-808	0.382	38.93	11.93	. 040	. 040	. 042	. 063

- Determined from TEPWAP analysis.

Table 22. Parameters of dynamic analysis for PD/LT (continued).

No.	Pit-Case Number	$\begin{gathered} \text { Case } \\ J_{c} \end{gathered}$	$\begin{gathered} \text { ENC } \\ \text { (kSpe/s/n) } \end{gathered}$	$\begin{aligned} & 2 L / C \\ & (\mathrm{~ms}) \end{aligned}$	7 Tp Quake (in)	Side Cuake (in)	Tip Demping ($9 / 7$)	Sko Damping ($9 / 7$)
94	35-8-80R	0.268	17.50	12.55	. 100	. 080	. 001	. 093
95	35-7-BOR	0.007	18.07	8.88	. 200	.100	. 040	. 047
98	35-10-BOP	0.182	60.58	7.89	250	040	. 019	. 083
97	E2-60R	0.509	04.20	6.31	. 280	100	. 120	. 175
98	63s-BOA	0.756	30.34	8.19	. 280	. 100	. 027	. 284
89	Le21-80R	0.129	189.40	5.50	. 310	. 100	. 128	. 168
100	LB20-BOR	0.164	181.80	7.91	. 230	. 120	. 211	. 211
101	LC3-308	0.399	181.80	20.31	. 350	250	. 192	. 137
102	LIN16-BOA	0.787	181.10	24.50	220	. 120	. 293	. 337
103	LE37-80R	0.082	38.80	10.00	. 140	080	. 181	. 850
104	LE64-80R	0.218	38.80	10.00	. 105	. 070	. 148	. 132
106	ST1-EOD	0.242	123.0	11.52	. 300	. 080	. 054	. 081
108	ST2-EOD	-0.102	132.3	9.98	. 600	080	017	. 020
107	STO-BOR	0.500	339.1	24.19	220	. 100	. 322	. 148
108	ST46-EOD	0.010	10.35	4.52	. 400	. 150	. 033	. 042
100	GZAB-EOD	-0.240	36.20	17.00	. 330	. 150	. 053	. 050
110	GZA6-EOD	0.000	27.80	18.50	. 320	. 150	. 030	. 050
111	GZAE-EOD	0.180	27.70	20.37	. 250	. 125	. 118	. 053
112	GZBECEOD	0.234	37.80	13.79	. 058	. 050	. 091	. 075
113	G78P2E00	0.301	36.20	17.08	. 040	. 050	. 051	. 129
114	GZ8P-EOD	0.174	27.70	11.56	. 240	. 120	. 061	.084
115	G2ES-EOD	0.281	37.80	10.34	. 450	. 350	. 171	. 238
116	GZO5-EOD	0.481	37.80	10.34	. 580	. 100	. 059	. 810
117	GZCCSEOD	0.471	37.80	13.91	. 430	220	. 029	. 117
116	G72-EOD	-0.038	37.80	13.91	. 530	. 320	. 137	. 244
119	CXP14-EOD	0.457	37.80	12.48	. 450	.100	. 077	. 102
120	G7P11-EOD	0.268	37.80	1248	.100	.100	. 063	. 178
121	G2P12-EOD	0.247	37.80	13.73	. 110	. 170	. 038	. 188
122	GUR22-EOD	0.812	111.0	18.71	. 065	. 065	. 207	. 126
123	GZWI-EOR	0.094	26.10	15.02	. 170	.100	. 118	. 142
124	A54-EOD	0.785	50.82	1207	. 138	. 090	. 160	. 101

- - Determined from TEPWAP analysis.

Table 22. Parameters of dynamic analysis for PD/LT (continued).

No.	Pro-Case Number	$\begin{gathered} C \operatorname{cose} \\ J_{c} \end{gathered}$	$\begin{gathered} \text { ENC } \\ (\mathrm{k} \mathrm{dps} / \mathrm{s} / \pi) \\ \hline \end{gathered}$	2L/C (ms)	Tlp Quake (in)	Side Ouake (in)	Tp Damping (s/f)	Stale Damping ($8 / \mathrm{n}$)
125	A54-BOR	0.149	50.82	1207	. 100	343	. 088	. 109
128	A147-EOD	-0.599	48.44	11.18	. 669	. 100	. 068	. 112
127	A147-80R	0.310	47.20	10.89	219	. 100	. 075	. 100
128	GF19E00	0.280	29.80	9.45	. 110	. 100	. 035	. 062
128	GF110-EOD	-0.117	38.73	6.79	. 160	. 110	. 034	. 117
130	GF222-EOD	0.221	38.73	7.97	. 140	. 130	. 065	. 078
131	GF224-E00	0.008	17.31	8.30	. 080	. 030	. 046	. 023
132	GF312-EOD	0.830	38.73	3.93	. 120	. 080	. 115	. 057
133	GF313-EOD	1.124	29.80	4.18	. 150	. 080	. 133	. 043
134	GF412-EOD	1.355	38.73	5.78	. 120	. 120	. 058	. 028
136	GF413-EOD	1.058	29.80	4.07	. 100	. 120	. 084	. 029
138	GF414-EOD	1.390	29.80	5.05	. 120	. 110	. 043	. 012
137	GF415-EOD	0.622	38.73	5.88	130	. 100	. 058	. 027
138	EFB2-EOD	0.093	27.85	-	-	-	-	-
139	EF167-BOR	0.835	27.98	-	-	-	-	-
140	A3-E001	-0.392	209.68	13.43	. 330	. 120	. 110	. 230
141	A3-8OR1	0.714	209.68	13.43	. 270	. 100	. 130	. 160
142	A3-EOD2	-0.329	209.68	13.43	250	. 150	. 160	. 180
143	A3-80P2	-0.464	209.68	13.43	. 020	. 080	. 150	. 280
144	A3-80R3	0.209	209.68	12.78	. 170	. 100	. 200	220
145	A14-001	0.130	291.07	15.35	. 390	. 100	. 130	. 280
146	A14-002	-0.009	291.07	15.35	. 370	. 140	. 110	. 280
147	A14-80f4	0.213	291.07	15.35	. 100	. 120	220	. 220
148	A14-8082	0.402	291.07	10.78	200	. 150	. 120	230
149	A25-E00	0.267	207.40	15.31	. 350	. 120	. 080	. 120
150	A25-BORT	-0.188	207.40	15.31	. 320	. 100	. 100	. 110
151	A25-80R2	0.010	207.40	15.31	. 380	. 270	. 310	. 100
152	A25-80R3	-0.008	207.40	15.31	. 380	. 250	280	. 180
153	A18-EOD	0.064	150.55	9.05	. 230	. 100	. 150	. 100
154	A16-BOR1	0.103	150.55	9.05	. 330	. 100	. 160	.100
155	A16-BOR2	0.332	150.55	8.68	240	. 080	650	. 160

- Determined from TEPWAP analysis.

Table 22. Parameters of dynamic analysis for PD/LT (continued).

No.	Pro-Case Numbor	$\begin{gathered} \text { Case } \\ J_{e} \end{gathered}$	$\begin{gathered} \text { EAC } \\ (\mathrm{mps} / 9 / \pi) \end{gathered}$	$\begin{aligned} & 2 \mathrm{~L} / \mathrm{C} \\ & \text { (ms) } \end{aligned}$	$7 p$ Cuake (in)	Slde Quake (in)	Tlp Dampling (s / ft)	Sxde Damping ($3 / \pi$)
158	A41-EOO	-0.027	205.97	13.24	. 290	. 080	. 150	. 080
157	A11-80R1	0.034	205.97	13.24	. 370	. 090	. 140	. 090
158	A1-BOP2	0.080	205.97	8.95	. 350	. 100	. 130	. 100
150	A101-EOD	0.375	208.34	1285	. 400	. 120	. 040	. 310
160	A101-60P4	0.142	208.34	12.65	. 120	. 080	. 120	. 160
161	A101-BOR2	0.273	208.34	10.28	.100	. 090	. 200	. 210
162	A133-EOD	-0.196	212.62	18.31	. 360	. 180	. 260	. 210
163	A133-B0R	0.217	21262	16.30	. 130	. 130	. 210	. 180
164	A145-EOD	-0.454	212.71	18.59	. 190	. 090	. 150	. 240
165	A145-80A1	0.338	212.71	18.59	. 170	. 170	. 170	270
168	A145-BOR2	-0.019	212.71	16.21	. 160	. 140	. 210	. 210
167	C83-80R	0.647	255.08	11.38	. 190	. 100	.563	. 317
168	CE3-BORL	0.520	255.08	11.67	. 190	. 110	527	. 379
160	C85-80R	-0.396	291.95	12.45	. 140	. 100	. 314	. 929
170	CB5-BORL	-0.188	291.85	8.74	. 300	.100	. 227	. 405
171	CB11-30RL	0.363	318.10	12.81	. 140	. 180	1.335	. 249
172	CB11-EORL	0.259	318.10	12.81	120	. 170	. 860	538
173	C817-90R1	0.029	297.18	13.63	. 130	. 210	.413	. 258
174	CB17.80R2	0.128	297.18	13.63	. 250	. 160	. 318	. 277
175	CB17-80f1	0.082	297.18	12.85	. 220	. 030	. 350	. 125
176	CE17-0RL	0.024	297.18	12.65	. 250	. 010	. 328	. 031
177	CR23-BOR	0.312	309.73	12.95	. 140	. 130	. 858	. 284
178	C823-BORL	0.408	309.73	12.95	. 050	. 170	1.674	. 535
170	CB29-BORL	-0.213	288.28	13.78	. 090	. 100	. 707	. 483
180	C839-EORL	0.017	288.28	13.78	. 200	. 100	. 129	. 812
181	C835-BOR1	-0.311	293.99	13.79	. 240	. 100	. 113	. 005
182	CBJ5-80R2	0.167	293.99	13.79	. 180	. 100	. 113	. 433
183	CB35-BORL	0.029	293.90	12.68	.090	. 170	. 700	228
184	CB4t-EOR	-0.161	30220	14.14	. 260	. 100	. 141	. 209
185	C841-30R	0.118	302.20	14.00	. 250	. 110	. 127	. 198
188	CB41-BORL	-0.117	302.20	10.92	. 140	. 130	. 351	. 392

' - Determined from TEPWAP analysis.

Table 22. Parameters of dynamic analysis for PD/LT (continued).

No.	PIN-Case Number	$\begin{aligned} & \text { Case } \\ & J_{c} \end{aligned}$	$\begin{gathered} \text { ENC } \\ \text { (naps/2/n) } \end{gathered}$	$\begin{aligned} & 2 \mathrm{~L} / \mathrm{C} \\ & (\mathrm{~ms}) \end{aligned}$	nip Quake (n)	Side Quake (in)	Tip Damping ($9 / 7$)	Slde Demping ($8 / \mathrm{fl}$)
187	CB2B-EOD	-0.408	281.84	11.40	. 210	. 120	. 078	. 105
188	CB26-BOR	-0.137	281.84	11.40	. 270	. 110	. 099	. 050
189	CR28-EOR	-0.008	281.84	11.40	. 330	. 090	. 058	. 068
190	CB20-80F?	-0.104	281.94	9.25	230	. 100	. 176	. 738
191	33P1-EOD	-0.141	38.90	14.39	.150*	. $300{ }^{*}$. 080°	. 010°
182	33P1-80R	-0.017	38.80	14.39	. 060	. 040	. 030	. 038
103	33Pr-EOR	-0.240	38.90	14.39	. 100	. 100	. 012	. 028
104	33P2-EOD	-0.182	17.54	17.81	. 400^{*}	200*	.150*	. $020{ }^{*}$
195	33P2-BOR	-0.125	17.54	13.21	. 300	. 300	. 048	. 048
186	33P2-EOR	-0.098	17.54	13.21	. 300	. 300	. 010	. 033
197	33 P 4 EOD	0.152	67.30	10.45	.100*	.025*	.100*	. $050{ }^{*}$
180	33P5-E00	0.509	21.21	6.94	$000{ }^{*}$	100	. 040^{*}	. 040^{*}
189	TRD22-EOD	0.371	38.70	268	. 150	. 100	. 015	. 224
200	TRDE2-BOR	0.157	38.70	2.68	. 160	. 100	. 106	216
201	TRE22-EOD	0.881	38.70	3.53	. 100	. 100^{*}	. 100^{*}	. 100^{*}
208	TRE22-8OA	0.411	38.70	3.53	. 250	. 100	. 018	. 135
203	TRPSX-EOD	0.418	27.80	2.94	. 150	. 100	. 020	. 111
204	TRPSX-BOR	-0.059	27.80	294	. 150	.100	. 013	. 128
205	PR131-80R	0.162	14.10	3.15	. 300	300	. 034	. 235
200	TRAHEOR	-0.310	49.70	18.24	. 200	. 100	. 025	. 753
207	TRBH-BOR	0.138	46.80	13.40	. 050	. 050	1.040	. 208
208	TRBP-EOP	-0.730	21.80	1294	. 025^{*}	.100'	.200*	.100*

- Determined from TEPWAP analysis.
$1 \mathrm{kip} / \mathrm{s} / \mathrm{ft}=14.6 \mathrm{kN} / \mathrm{s} / \mathrm{m}$
1 in $=25.4 \mathrm{~mm}$
$1 \mathrm{~s} / \mathrm{ft}=3.281 \mathrm{~s} / \mathrm{m}$

Table 23. Pile capacity based on static load test and dynamic analysis for PD/LT.

No	pro-Ceson Number	Land Tow Type	Davesion's Crteria (c)ps)	Snape of Curve (kps)	$\begin{aligned} & \mathbf{A}=1^{\prime} \\ & (\mathrm{kdps}) \end{aligned}$	$\begin{aligned} & \Delta=0.1 B \\ & (\mathrm{Mpa}) \end{aligned}$	DeBeer (dps)	Staik Pesis: R_{2} (NPs)	CAPWAP TEPWAP ($\mathrm{N} \mathrm{Sp}_{\mathrm{s}}$)	Energy Appr. R_{1} (1.1ps)	$\begin{aligned} & K_{m p} \\ & \frac{\boldsymbol{R}_{4}}{R_{6}} \end{aligned}$
1	FN1-EOD	0	304	300	304	304	300	300	230	382	0.629
2	FN1-BOR1	0	304	300	304	304	300	300	375	484	0.620
3	FN1-BOR2	0	304	300	304	304	300	300	431	535	0.581
4	FNR-EOD	0	358	354	362	368	358	354	228	418	0.847
5	FN2-BOR	0	358	354	362	368	358	354	305	487	0.727
6	FN3-EOD	0	378	370	382	393	368	374	178	480	0.779
7	FN3-80A	0	378	370	382	393	388	374	297	621	0.602
8	FNHEOD	0	284	280	288	292	282	280	244	001	0.698
9	FN4-BOR	0	284	280	288	292	282	280	288	582	0.481
10	PIAEEOD	0	928	934	772	910	920	830	367	569	1.634
11	FIA-BOR	0	828	934	772	910	920	930	731	689	1.349
12	FIE-EOD	0	650	480-640	650	M	648	650	511	708	0.918
13	FE-BOR	0	650	480-640	850	Na	648	850	521	698	0.934
14	FO1-EOC	0	588	500-560	672	NA	544	567	498	716	0.811
15	FOt-BOR	0	508	500-560	672	Na	544	557	700	1168	0.478
18	FO2-EOO	0	760	750	780	800	754	750	530	846	1.181
17	FO2-BOR	0	760	750	780	800	754	750	731	1158	0.648
18	FO3-EOD	0	778	700-850	816	862	820	820	568	584	1.404
18	FO4-ECD	0	1700	1400	1716	1800	1664	1650	858	763	2163
20	FOA-BOR	0	1700	1400	1716	1800	1664	1650	767	1268	1.300
21	FOR1-EOD	0	1360	1350	1188	1600	1400	1380	559	839	1.651
22	FOR1-80A	0	1360	1350	1168	1600	1400	1380	720	1207	1.143
23	FME-EOD	0	440	360-040	528	MA	481	420	346	357	1.178
24	FM5-BOR	0	440	360-440	526	MA	481	420	499	734	0.572
25	FM17-EOD	0	408	375-440	541	NA	430	447	424	524	0.853
26	FM17-00R	0	408	375-440	541	NA	430	447	526	781	0.572
27	FME3-EOD	0	342	290-330	378	MA	358	340	323	412	0.825
28	FME3-BOF	0	342	290-330	378	MA	356	340	340	426	0.798
29	FC1-EOD	0	316	320-360	370	372	358	340	270	342	0.994
30	FC1-80R	0	316	320-360	370	372	358	340	285	363	0.837
31	FC2-EOD	0	368	350-400	442	M	336	376	375	402	0.935

${ }^{\bullet}$ - Determined from TEPWAP analysis.

Table 23. Pile capacity based on static load test and dynamic analysis for PD/LT (continued).

No	Pra-Cese number	Lond Ted Type	Devtison's Criteria (0.dps)	$\begin{aligned} & \text { Shape } \\ & \text { of } \\ & \text { Curve } \\ & \text { (idps) } \end{aligned}$	$A=1^{\prime}$ (10ps)	$\begin{aligned} & \Delta=0.1 \mathrm{~B} \\ & \text { (dps) } \end{aligned}$	DeBeer (1dps)	Static Ruselet R_{6} (kpas)	CAPWAP TEPWAP (N dPQ)	Energy Appr. R_{u} (idps)	$\begin{aligned} & \mathbf{K}_{\mathrm{Dp}} \\ & \frac{\mathbf{R}_{\mathbf{w}}}{\mathbf{R}_{\mathbf{y}}} \end{aligned}$
32	FC2-BOR	0	368	350-400	442	NA	336	376	340	353	1.065
33	FMII-EOD	0	330	$288-317$	333	Na	320	310	285	248	1.260
34	FM11-BOR	0	330	288-317	333	Na	320	310	319	300	1.013
35	FMR2-EOD	0	209	180	NA	NA	126	160	184	179	0.294
36	FM12-EOR	0	208	160	NA	NA	128	160	217	279	0.573
37	FWA-E00	SM	1300	1300	1300	NA	1150	1300	285	1145	1.935
38	FWA B0R	SM	1300	1300	1300	M	1150	1300	052	1154	1.127
39	FWB-EOD	SM	1000	1200	1000	NA	1497	1225	plug	1708	0.717
40	FWB-BOR	SM	1000	1200	1000	NA	1497	1225	plug	1280	0.857
41	FA1-EOD	S	370	325-350	419	NA	334	345	205	302	1.142
42	FA1-BORT	S	370	325-350	419	NA	334	345	257	462	0.747
43	FA1-BOF2	s	370	325-350	419	NA	334	345	382	840	0.411
44	FA2-EOD	S	550	480-550	588	NA	541	535	428	568	0.942
45	FA2-BOR1	3	550	480-550	589	NA	541	535	469	950	0.563
48	FA2-BOR2	s	550	480-550	588	M	541	535	599	898	0.597
47	FA3-EOD	S	025	500-640	679	M	648	614	340	547	1.122
48	FA3-B0AT	5	625	500-640	678	M	648	614	307	744	0.825
49	FA3-BOR2	S	625	500-640	679	NA	648	614	587	828	0.743
50	FAt-EOD	S	817	685-825	887	MA	748	773	448	772	1.001
51	FA-BOR1	s	817	685-825	887	NA	748	773	604	1062	0.728
52	F44-80P2	S	817	605-925	887	Ma	748	773	852	1448	0.534
53	FA5-EOD	S	1140	1050	1188	M	939	1074	662	1543	0.696
54	FA5-BOR	5	1140	1050	1168	M	939	1074	945	2238	0.480
55	FVI5-E00	0	315	300-350	372	440	246	315	194	336	0.038
58	FV15-80R	0	315	300-350	372	440	246	315	198	388	0.810
57	FV10-EOD	0	345	230-300	400	484	240	313	159	305	1.028
58	PMO-BOR	0	345	230-300	400	484	240	313	179	285	1.098
50	FMNEEOD	0	765	720-740	722	752	724	740	342	476	1.555
60	FMNEBOR	0	785	720.740	72	752	724	740	652	831	0.890
61	FPS-EOD	0	243	220-235	NA	NA	211	227	210	211	1.076
62	FPS-80R	0	243	220-235	NH	NA	211	227	239	280	0.811

* - Determined from TEPWAP analysis.

Table 23. Pile capacity based on static load test and dynamic analysis for PD/LT (continued).

No	$\begin{aligned} & \text { Plo-Case } \\ & \text { Numben } \end{aligned}$	Loed Teat Typo	Davtseon's Criterla (kips)	Shape of Curve (Ndps)	$\begin{aligned} & A=1^{1} \\ & (\mathrm{cdps}) \end{aligned}$	$\begin{gathered} \Delta=0.18 \\ (\mathrm{kppq}) \end{gathered}$	DeBeer (k ps)	Static Rendat R_{8} (dps)	CAPWAP TEPWAP (kdps)	Energy Appr. R_{J} (k p8)	$\begin{aligned} & K_{w p} \\ & \frac{R_{u}}{R_{U}} \end{aligned}$
83	FKG-EOD	0	368	480-520	530	NA	475	465	288	392	1.188
64	FKGEOR	0	368	480-520	530	NA	475	465	295	403	1.154
65	FL3-E00	LIT	400	400	NA	NA	400	400	138	253	1.550
60	F3-BOR1	LT	400	400	NA	NA	400	400	272	508	0.669
67	FL3-BOR2	ШT	400	400	NA	NA	400	400	350	893	0.448
68	CA1-EOD	S	540	500-560	390	390	530	533	410	444	1.200
69	CAI-BOR	S	540	500-560	390	390	530	533	500	433	1.231
70	CA2.BOR	S	368	320-400	370	370	355	380	342	430	0.884
71	CAS-BOR1	s	468	460-500	500	MA	400	480	409	540	0.888
72	CA5-BOR2	S	488	460-500	500	HA	460	480	489	543	0.883
73	CA38-80\%	0	169	200-230	271	271	227	230	241	309	0.623
74	CA24-BOR	3	242	220-260	NA	NA	248	243	207	403	0.595
75	CAG-80R	S	650	620-600	590	850	640	860	810	782	0.844
76	CAE-BOR?	S	600	620-660	590	650	640	660	584	742	0.889
7	CMEEOR	S	600	620-660	590	650	840	660	558	704	0.938
78	WC3-EOD	FO	610	550-950	NA	NA	620	810	509	751	0.812
79	WC3BORT	FO	610	550-650	NA	Na	620	610	506	781	0.781
80	WC380R2	f0	810	550-950	NA	NA	620	810	538	777	0.785
81	WCEEOD	FO	453	445-545	NA	NA	537	495	450	597	0.829
82	WC8BOR1	FO	453	445-545	NA	NA	537	495	480	713	0.694
83	WCABOR2	FO	453	445-545	NA	M	537	405	443	772	0.841
34	WE9-8OR	FO	900	830-880	925	NA	855	884	941	1789	0.500
85	WB1580R	FO	020	740-790	833	M	787	768	805	1448	0.529
88	T1/AEOD	SM	1084	1984	1984	NA	1808	1984	1775	2729	0.728
87	TI/AALT	SM	1884	1984	1984	NK	1808	1994	1800	2870	0.690
88	T1/E-EOD	SM	2898*	2425	NA	NA	1852	2648	2368	3042	0.874
89	T2/AEOD	Sm	1345	1323	NA	M	1654	1470	1252	1872	0.785
90	12/B-E00	SM	3285	22204	Na	NH	NA	$3080{ }^{*}$	2778	2984	1.040
91	35-1-BOR	S	322	320-350	354	366	318	325	260	274	1.184
92	35-4-800R	s	3350	300-330	334	342	314	320	360	465	0.684
93	35-5-80R	S	812	580-620	600	808	600	600	650	616	0.971

- Davisson's reduced for creep.
* - Extrapolated. (Lond taken to 2200 kjps .)

Table 23. Pile capacity based on static load test and dynamic analysis for PD/LT (continued).

No	Fro-Cese	Loed Teat туре	Daviseon's Crterla (NAps)	Shape of Curve (apa)	$\Delta=1^{\prime \prime}$ (olps)	$\Delta=0.1 \mathrm{~B}$ (Cdps)	DeBoer (10ps)	Static Resing R_{s} (d d p)	CAPNAP TEPWAP (Adp8)	Energy Appr. R_{L} ($\mathrm{ISPs}^{\text {) }}$	$\begin{aligned} & K_{\text {© }} \\ & \frac{\mathbf{R}_{8}}{\mathbf{R}_{4}} \end{aligned}$
94	35-8-BOR	s	800	500.550	530	548	528	530	580	528	1.007
95	35-7-80R	S	122	120-170	152	146	144	142	139	183	0.778
96	36-10-BOA	5	402	370-420	432	444	378	400	334	425	0.941
97	E2-80R	0	415	375-395	NA	NA	369	390	420	732	0.533
88	63s-BOR	CRP	284	250-272	292	NA	258	288	279	320	0.838
89	LE21-80R	S	389	380	M	484	280	380	381	519	0.694
100	Le20-80R	3	580	480	NA	NM	480	530	474	813	0.652
101	LC3-80R	S	620	600	680	NA	560	640	812	1169	0.547
102	LN16-BOR	5	600	600	600	NA	600	600	562	985	0.609
103	LE37-BOP	s	250	240	270	M	230	250	197	241	1.037
104	LE64-BOR	s	270	240	NA	NA	220	260	232	274	0.948
105	ST1-EOO	S	344	280-320	Na	NA	300	344	505	830	0.548
100	ST2.EOD	S	510	540	Na	Na	500	540	618	885	0.812
107	STP-80R	s	920	720-840	920	NA	800	800	807	1927	0.467
108	ST48-EOD	5	Na	104	NA	NA	104	104	82	113	0.920
100	GZA3-EOD	0	440	500	460	520	480	480	365	424	1.132
110	GZA5-EOD	0	256	160-210	320	314	270	298	293	339	0.873
111	GZAE-EOD	0	188	350	316	308	350	328	275	231	1.160
112	GZBBCEOD	0	440	500-560	500	590	560	530	413	453	1.169
113	G7BP2EOD	0	280	340	340	324	290	320	317	302	1.059
114	GZB6-EOD	0	380	420	456	530	360	390	341	413	0.944
115	GZDS-EOD	0	484	420-470	540	NA	410	440	214	557	0.790
118	GZOSEOD	0	480	440-480	600	NA	480	488	205	511	0.851
117	GZCCSEOD	0	450	480-520	520	750	NM	490	482	599	0.818
118	G72-EOD	0	040	600-660	890	760	530	660	267	568	1.167
119	GZP4-EOD	0	390	360-400	440	500	480	420	306	570	0.737
120	G7PI1-EOO	0	250	340-420	380	440	430	386	239	390	0.967
121	G7P12-EOD	0	500	600	630	NA	NA	560	520	674	0.831
122	GZE22-EOD	0	1120	1120	1040	NA	840	1000	1109	1357	0.781
123	GZWH-EOR	0	360	335-400	404	418	353	380	250	357	1.084
124	A64-EOD	CRP	652	630-652	818	638	639	638	383	464	1.437

' - Determined from TEPWAP analysis.

Table 23. Pile capacity based on static load test and dynamic analysis for PD/LT (continued).

No	Plit-Case Numbor	Land Tead Type	Davisson'I Crteria (14pa)	Shape or Curve (dops)	$\Delta=1^{\circ}$ (1dps)	$\begin{gathered} \Delta=0.18 \\ \text { (dips) } \end{gathered}$	DoBeer $\text { (} \mathrm{dpps} \text {) }$	Static Roslat 9 (dps)	CAPWAP TEPWAP (kdps)	$\begin{aligned} & \text { Energy } \\ & \text { Appr. } \\ & R_{v} \\ & \text { (dps) } \end{aligned}$	$\begin{aligned} & K_{s p} \\ & \frac{\mathbf{R}_{\mathbf{x}}}{\mathbf{R}_{\mathrm{i}}} \end{aligned}$
125	AS4-BOR	CRP	652	630-652	818	638	639	638	611	698	0.814
128	A147-E00	CRP	558	547	555	580	540	562	259	339	1.628
127	A147-80R	CrP	558	547	555	560	540	552	584	653	0.845
128	GFio-EOD	0	330	400-460	380	380	325	307	398	434	0.915
129	GF110-EOD	0	500	500-800	560	560	450	550	457	605	0.800
130	GF222-EOD	0	580	540.600	590	590	540	570	512	623	0.916
131	GF224-EOD	0	M	450-470	NH	NA	485	463	419	458	1.011
132	GF312-EOD	0	340	300-310	NA	Na	280	310	405	483	0.642
133	GF313-EOD	0	334	320-330	MA	NA	334	330	448	532	0.620
134	GF412-EOD	0	240	240-280	294	294	200	272	455	530	0.513
135	GF413-EOD	0	300	280-320	350	350	270	300	428	491	0.611
136	GF414-EOO	0	360	360-420	420	420	320	390	524	630	0.618
137	GF415-EOD	0	460	460-520	540	540	440	500	561	599	0.835
138	EF82-EOD	0	502	440-510	468	458	480	477	522	838	0.750
139	EF187-BOR	0	271	287	279	277	267	272	479	625	0.439
140	A3-E001	Fo	958	850.940	980	NA	058	839	472	609	1.493
141	A3-8081	FO	958	850.940	960	NA	958	839	538	880	1.423
142	A3-EOD2	FO	958	850-940	960	Na	958	939	368	545	1.723
143	A3-80FP	FO	858	850-940	960	NA	958	839	462	812	1.534
144	A3-BOR3	FO	958	$850-940$	960	NA	958	939	925	1421	0.661
145	A14-001	FO	M	860-945	Na	NA	908	905	684	082	0.022
140	A14-DD2	FQ	M	800-945	NA	M	808	905	741	1076	0.841
147	A14-80R1	FO	MA	800-945	NA	NH	908	905	604	1118	0.809
148	A14.80R2	FO	M	860-945	NA	M	908	905	982	1478	0.813
140	A25-EOD	FO	715	750-840	840	M	845	800	459	549	1.457
150	A2S-BOR1	FO	715	750-840	840	MA	845	800	555	685	1.203
151	A25-8072	FO	715	750-640	840	Na	845	800	452	970	0.825
152	A25-BOR3	FO	715	750-840	840	MA	845	800	442	230	0.860
153	A18-EOD	FO	315	275-315	350	ma	272	308	224	303	1.017
154	A16-80R1	FQ	315	275-315	350	NA	272	308	282	415	0.742
155	A18-BOR2	FQ	315	275-315	350	NA	272	308	298	505	0.610

- - Determined from TEPWAP analysis,

Table 23. Pile capacity based on static load test and dynamic analysis for PD/LT (continued).

No	Plo-Cese number	Land Teal Туре	Davisson's Citerta (14ps)	$\begin{aligned} & \text { Snape } \\ & \text { of } \\ & \text { Curve } \\ & \text { (kpps) } \end{aligned}$	$\Delta=1^{1}$ (1dps)	$\begin{gathered} \Delta=0.1 \mathrm{~B} \\ (\mathrm{kjps}) \end{gathered}$	DeBeer (Npss)	Static Resigt R (NPs)	CAPWAP TEPWAP (10ps)	$\begin{aligned} & \text { Energy } \\ & \text { Appr. } \\ & R_{L} \\ & (\mathrm{dpp}) \end{aligned}$	$\begin{aligned} & \mathbf{K}_{2 p} \\ & \frac{\mathbf{R}_{4}}{\mathbf{R}_{4}} \end{aligned}$
158	M1-E00	FO	524	500-525	540	NA	538	530	431	624	0.849
157	M1-80A	FO	524	500-525	540	NA	536	530	503	715	0.741
158	41-8082	FO	524	500-525	540	NA	538	530	565	834	0.835
159	A101-EOD	FO	812	800-840	NA	NA	800	810	517	474	1.708
160	A197-BOR1	FO	812	600-840	NA	NA	800	810	669	722	1.122
101	A101-BOR2	FO	812	800-840	M	Na	800	810	803	881	0.819
162	A133-EOD	FO	808	780-860	810	NA	800	828	311	513	1.810
163	A133-BOR	FO	808	780-860	810	NA	868	828	780	998	0.828
164	A145-E00	FO	976	860-950	975	M	913	040	353	549	1.712
165	A145-BOR1	FO	976	860-950	975	M	913	940	841	745	1.262
168	A145-BOP2	FO	978	860-860	875	NA	813	940	761	818	1.024
167	CB3-BOR	FQ	500	488-500	470	Ma	472	484	564	978	0.485
188	C83-8ORL	FO	500	488-500	470	NA	472	484	502	998	0.485
169	CB5-BOR	FO	1250	1240	1325	NA	1170	1248	588	1008	1.236
170	CB5-BORL	FQ	1250	1240	1325	M	1170	1246	584	1167	1.068
171	C811-BORL	FO	1435	1370	1430	M	1364	. 1400	814	1803	0.776
172	CB11-EOPL	FO	1435	1370	1430	NA	1364	1400	839	1827	0.768
173	C817-BOR1	FO	1515	1400	1500	M	1400	1453	820	1778	0.818
174	C817-8OR2	FO	1515	1400	1500	Na	1400	1453	749	1824	0.797
175	CB17-BORL	FO	1515	1400	1500	MA	1400	1453	683	1501	0.968
176	C817-ORL	FO	1515	1400	1500	NA	1400	1453	845	1641	0.885
177	CE23-BOR	FO	043	640-810	732	NA	759	702	618	884	0.813
178	CB23-BOPL	FO	843	840-810	732	NA	758	702	444	1308	0.538
179	CB29-BOPL	FQ	917	870-960	980	NK	910	926	778	856	1.083
180	CBEOEOPL	FQ	917	870-960	960	Na	910	926	448	1069	0.866
181	CB36-8081	FO	1463	1400	1480	NA	1400	1437	812	1001	1.438
182	C835-8OPR	FO	1463	1400	1490	MA	1400	1437	949	1422	1.011
183	CB35-BORL	FO	1463	1400	1490	MA	1400	1437	909	1288	1.115
184	CB41-EOR	FO	1410	1380	1435	NA	1357	1396	857	1238	1.128
185	C841-BOR	FO	1410	1380	1435	NA	1357	1398	850	1225	1.140
188	CE41-BORL	FO	1410	1380	1435	NA	1357	1396	485	1162	1.201

- - Determined from TEPWAP analysis.

Table 23. Pile capacity based on static load test and dynamic analysis for PD/LT (continued).

No	Pro-Crese Number	Loed Toet Type	Deviacon's Crtieria (1dps)	Shape of Curve (klps)	$\Delta=1^{\circ}$ (Nps)	$\begin{gathered} \Delta=0.18 \\ \text { (NAps) } \end{gathered}$	DeBeor $\text { (} \mathrm{K}, \mathrm{pa} \text {) }$	Static Resist R_{8} (dps)	CAPWAP TEPWAP (1dps)	$\begin{aligned} & \text { Enorgy } \\ & \text { Appr. } \\ & R_{u} \\ & \text { (1dps) } \end{aligned}$	$\begin{aligned} & \mathbf{K}_{\varphi} \\ & \underline{\mathbf{R}_{6}} \\ & \mathbf{R}_{v} \end{aligned}$
187	C828-EOO	FO	880	850-850	1000	M	1000	985	488	555	1.739
188	C82e-80R	FO	000	850-950	1000	Na	1000	985	619	788	1.225
189	CR28-EOR	F0	960	850-950	1000	Na	1000	985	716	957	1.008
190	C828-BOP2	FO	860	850-950	1000	MA	1000	985	583	1113	0.867
191	33P1-EOD	5	>800	800	520	600	800	800	439	657	1.218
102	33P1-808	3	>800	800	520	600	800	800	715	898	0.881
103	33P4-EOR	S	>800	800	520	600	800	800	650	923	0.867
194	33P2-EOD	s	490	450-500	450	490	460	490	290°	418	1.172
195	33P2-80R	5	490	450-600	450	480	460	490	355	520	0.942
196	33P2-EOR	S	490	450-500	450	490	460	490	401	546	0.897
197	33P4-EOD	S	460	350-500	558	592	470	500	400°	625	0.800
198	33P5-EOD	s	164	180-200	244	284	200	200	$143 *$	248	0.808
199	TROE2-EOD	S	354	350	MA	M	358	350	432	553	0.633
200	TRDE2-BOR	S	354	350	NA	M	356	350	294	504	0.694
201	TRE22-EOD	S	558	570	NA	NH	570	570	575*	720	0.782
202	TREP2-BOR	S	558	570	M	NA	570	570	818	207	0.808
203	TRP5 ${ }^{\text {a }}$-EOD	5	410	500-550	510	560	400	475	484	508	0.938
204	TRP5X-BOR	8	410	500-550	510	560	400	475	395	490	0.909
206	TR131-BOA	S	140	160-200	210	200	200	150	168	169	0.888
208	TRNHEOR	S	730	650-700	600	650	640	650	218	564	1.152
207	TRBH-80R	S	325	275-300	337	352	304	300	100	268	1.128
208	TRBPEOA	S	340	>300	340	340	325	330	248*	300	1.078

\bullet Determined from TEPWAP analycis.
$1 \mathrm{kjp}=4.448 \mathrm{kN}$ 1 in $=25.4 \mathrm{~mm}$

REF. NO.	PILE NAME	$\begin{aligned} & \text { SKIN } \\ & \text { SOR } \end{aligned}$	$\begin{aligned} & \text { TOE } \\ & \text { SOIL } \end{aligned}$	PILE TYPE	$\begin{aligned} & \text { LEN. } \\ & \text { FT } \end{aligned}$	AREA IN2	$\begin{gathered} \text { E MOD } \\ \text { KSI } \end{gathered}$	HAMMER	$\begin{aligned} & \text { FMX } \\ & \text { KIPS } \end{aligned}$	$\begin{aligned} & \text { EMX } \\ & \text { K-FT } \end{aligned}$	vmx FT/S	$\begin{gathered} \text { DMXX } \\ \text { IN } \end{gathered}$	$\begin{aligned} & \text { BLOWS/ } \\ & \text { INCH } \end{aligned}$	CAPWAP Rult KIPS	$\begin{aligned} & \text { ENERGY } \\ & \text { APPROACH } \\ & \text { KIPS } \\ & \hline \end{aligned}$
362	BOR TP1	CLSA	CL	PSC 18	67.0	324.0	6097.2	D46-32	1581.0	41.61	10.10	0.453	5.00	616	1529
321	83E 2 RE	CL	CL	PSC18	32.5	324.0	5651.5	D 4613	1156.3	24.33	8.47	0.824	2.00	333	441
319	S4PC N20	CL	CL	PSC30	63.0	900.0	5122.0	C5300	1684.1	40.19	4.64	0.632	1.50	337	743
70	DD TP2	Alluv	CL	CEP12x0.18	37.0	7.0	30000.0	D12	161.0	7.93	11.70	0.848	3.42	123	167
155	BOR T2	CLSI	CL	PSC 12	62.0	144.0	5452.0	D30	541.0	12.56	8.60	0.409	5.00	305	495
69	BOR TP3	Alluv	CL	CEP12x0.18	38.0	7.0	30000.0	D12	184.0	4.81	10.30	0.438	7.00	183	199
162	EOD T3	CLSI	CL	PSC 14	62.0	196.0	5934.0	D30	558.0	9.86	6.10	0.386	9.17	179	478
156	BOR T3	CLSI	CL	PSC 14	62.0	196.0	5934.0	D30	717.0	16.16	8.10	0.459	7.00	297	644
328	EOD TP1799	SASI	CL	PSC	70.0	96.5	6190.0	MKT DE33	223.0	5.22	4.00	0.587	1.83	101	111
161	EOD T2	CLSI	CL	PSC 12	62.0	144.0	5452.0	D30	476.0	12.74	7.40	0.444	500	226	475
329	RES TP1799	SASI	CL	PSC	730	96.5	6190.0	MKT DE33	192.0	2.66	3.10	0.232	14.42	226	212
363	BOR TP2	CLSA	CL	PSC 24	77.0	576.0	6500.0	D46-32	1049.0	17.08	3.80	0.257	11.00	643	1178
366	BOR TP5	CLSA	CL	PSC 24	760	576.0	6609.2	D46-32	19220	37.34	6.60	0.453	14.00	655	1709
365	BOR TP4	CLSA	CL	PSC 18	710	3240	6790.0	D46-32	12790	28.96	7.60	0374	5.00	655	1211
409	EOD PN7	CL SA	CLSA	CEPIPE24	603	548	30000.0	K35	8542	1709	9.03	0.501	1350	507	714
235	BORL-8	SuCl	CL St	PSC 12	668	144.0	46440	ICE 640	480.3	11.83	820	0.513	15.00	373	489
410	BOR PN7	CL SI	CLSI	CEPIPE24	603	548	30000.0	K35	8542	1709	9.03	0.501	1350	507	714
252	DO J31	CL Tu.	CLIL	CEPIPE 1	910	312	300000	K35	761.1	40.79	1341	1326	2.25	416	553
191	BOR TP1235	SA	CLSA	PSC 14	970	196.0	6120.0	VUL 512	6360	22.47	7.20	0.590	2600	646	858
276	BOR PNH20	CLSA	CLSA	PSC 12	58.0	144.0	51200	VUL 06	472.0	11.16	790	0.463	5.00	185	404
277	EOD PNH20	CLSA	CLSA	PSC 12	58.0	144.0	5120.0	VUL 06	426.0	11.59	8.20	0.862	200	89	204
275	BOR PNF2	CLSA	CLSA	PSC 12	58.0	144.0	5120.0	VUL 06	286.0	5.86	4.10	0.409	5.00	93	231
192	BOR TP1259	SA	CLSA	PSC 14	97.0	196.0	6120.0	VUL 512	542.0	18.74	5.00	0.618	28.00	598	688
224	BOR PN111	SACL	CLSI	PSC 16	35.0	256.0	5057.0	CON 65	435.0	4.56	3.30	0.150	166.67	329	702
226	EOD PN111	SACL	CLSI	PSC 16	35.0	256.0	5057.0	CON 65	248.0	1.83	1.90	0.120	4467	237	308
225	EOD PN110	SACL	CLSI	PSC 16	35.0	256.0	5220.0	CON 65	424.0	4.16	2.90	0175	25.33	282	466
58	DD TP15	CLSI	CLSI	PSC 18	84.0	3240	5177.5	CON 160	551.0	16.13	4.30	0.594	2.67	469	400
223	BOR PN110	SACL	CLS	PSC 16	35.0	256.0	5220.0	CON 65	451.0	4.30	3.60	0145	52.33	346	629
57	DD TP15	CLSI	CLSI	PSC 18	84.0	324.0	5037.6	CON 160	664.0	19.16	5.50	0.693	575	390	530
59	DD TP16	CLS!	CLS	PSC 14	77.0	196.0	4658.0	CON 160	397.0	19.72	4.50	0.814	2.08	348	366
61	DD TP16	CLSI	CLSI	PSC 14	77.0	196.0	4658.0	CON 160	482.0	23.62	6.20	0711	9.00	615	690
11	EOD TP6	SASI	CLSI	PSC 12	53.0	144.0	6116.0	VUL 01	385.0	6.18	5.90	0317	100.00	393	454
10	BORTP6	SASI	CLSI	PSC 12	53.0	144.0	6116.0	VUL 01	219.0	3.02	3.20	0.233	833.33	277	309
60	DD TP16	CLSI	CLSI	PSC 14	770	196.0	4658.0	CON 160	460.0	22.20	5.70	0747	2.67	425	475
62	RES TP15	CLSI	CLSI	PSC 18	84.0	324.0	46580	CON 160	604.0	1808	470	0469	14.00	720	803
258	EOD 258	Alluv	TIL ALL	CEPIPE 1	98.5	12.1	30000.0	VUL 508	3303	21.71	14.93	1.112	5.58	308	404

$\begin{aligned} & \text { REF. } \\ & \text { No. } \end{aligned}$	PILE NAME	$\begin{aligned} & \text { SKIN } \\ & \text { SOIL } \end{aligned}$	TOE SOIL	$\begin{gathered} \text { PLEE } \\ \text { TVDDE } \end{gathered}$	LEN. FT	AREA	$\begin{gathered} \text { EMOD } \\ \text { KSI } \end{gathered}$	HAMMER	$\begin{aligned} & \text { FMX } \\ & \text { KIPS } \end{aligned}$	$\begin{aligned} & \text { EMX } \\ & \text { K-FT } \end{aligned}$	$\begin{aligned} & \text { VMx } \\ & \text { FT/S } \end{aligned}$	$\begin{aligned} & \text { DMX } \\ & \text { IN } \end{aligned}$	BLOWSI INCH	CAPWAP Rull KIPS	ENERGY APPROACH KIPS
52	EOD PITGNW	CL	TILL	PSC 14	145.0	196.0	4355.0	ICE 660	544.0	30.53	7.70	1.079	10.00	550	621
355	XPNA3	CLSA	TILL	CEP 14×0.5	84.0	21.2	30000.0	D16-32	596.0	27.83	16.20	0.931	5.00	208	591
360	EOD PN126	CL	TILL	PSC 14	70.0	196.0	4000.0	VUL 1400	520.0	19.73	6.70	0.649	11.00	530	640
56	RES PN50	CL	TILL	PSC 14	137.0	196.0	4974.0	ICE 640	324.0	9.58	4.20	0.486	40.00	369	450
51	EOD 8611	CL	TILL	PSC 16	145.0	256.0	4355.0	ICE 660	635.0	26.13	6.40	0.783	16.00	571	742
356	X PNB5	CLSA	TILL	CEP 14×0.5	87.0	21.2	30000.0	D16-32	590.0	25.18	15.50	0.810	3.75	178	561
358	BOR PN126	CL	TILL	PSC 14	70.0	196.0	4000.0	VUL 140C	434.0	11.84	5.80	0.430	21.00	442	595
55	RES PN20	CL	TILL	PSC 14	137.0	196.0	4974.0	ICE 640	352.0	10.21	4.60	0.512	80.00	428	467
361	EOD PN177	CL	TILL	PSC 14	70.0	196.0	3920.0	VIL 140C	476.0	19.22	6.10	0.665	12.00	489	616
54	RES PN9	CL	TILL	PSC 14	128.0	196.0	49740	ICE 640	407.0	15.23	5.50	0.668	25.00	400	516
359	BOR PN177	CL	TILL.	PSC 14	72.0	196.0	4000.0	VUL 140C	413.0	11.51	5.60	0.446	15.00	370	539
53	EOD PN10	CL	TILL	PSC 14	130.0	196.0	4974.0	ICE 640	339.0	11.29	4.50	0.670	12.00	328	360
357	X PNG3	CLSA	TILL	CEP 14x0. 5	88.0	21.2	30000.0	D16-32	637.0	29.32	16.80	0.865	5.00	260	661
36	EODPN1	cL	TILL	CEP 10.75	39.0	5.9	30000.0	CON 65	213.0	9.57	13.20	0.849	5.33	198	222

す。

Table 24．Pile／soil and dynamic measurements of data set PD（continued）．
$185 \quad 251$
185

 8
8
0
0
0
0
0 $\begin{array}{ccc}587.0 & 12.79 & 5.50 \\ 439.0 & 10.77 & 4.60 \\ 493.0 & 11.41 & 4.80 \\ 908.0 & 23.51 & 6.70 \\ 1048.0 & 22.81 & 5.20\end{array}$ 웅 8888 8 춫 6.00
833
8.17 $\stackrel{+}{=}$ $\stackrel{8}{\square} 8$ $\stackrel{3}{2}$ $\begin{array}{r}8 \\ \hline\end{array}$ 8 $\stackrel{n}{n}$ $\stackrel{m}{\Gamma}$ ${ }_{3} 8$ $\underset{\mathrm{m}}{\mathrm{m}} \underset{\mathrm{m}}{\mathrm{N}}$ $\underset{\sim}{\infty} \stackrel{n}{\sim}$ $\stackrel{8}{\sim}$ $\stackrel{8}{\sim}$ ${ }_{\infty}^{2}{ }_{\infty}^{8}$ 8. 8 $\stackrel{8}{i}$ is 8
磨
hammer fmx emx mix
0.504
10.06
6.73
261.0
VL 50C
ICE 660 0.916 0.524 694.0 123.0 16.19合品 ${ }_{\circ}^{\circ}$ $\stackrel{\square}{\dot{c}}$ 응 윷
 $\begin{array}{lll}694.0 & 18.93 & 5.40 \\ 1123.0 & 23.07 & 5.10\end{array}$ 660
660
$46-13$ D46－13
D46－23
ICE 1070 D46－23
D46－13 D46－13
D46－23 D46－23
D46－13 D46－13
D46－23 D46－23
ICE 1070 CON 125E D46－13
ICE 1070 D46－13
D46－23 D16－23
D46－23 D16－23
DEL46－23 DEL46－23
管 D30
D46－32 우울
 8
恶

14.6
 ${ }_{60}^{20}$ $\substack{\text { sion } \\ \text { sio } \\ 0.0}$ 1 $\stackrel{\Gamma}{i}$ 42.0
82.0
91.0 안 울
$\stackrel{0}{\circ}$
 PSC 18 Nu N
U

n | ∞ |
| :---: |
| | U $\stackrel{\square}{4}$ $\stackrel{\infty}{\circ}$品 $\stackrel{\infty}{\square}$ o $\underset{\sim}{J}$

0
0
0
0
0

⿹ㅓㅁ 둥 | O |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 | PSC24

PSC18京 더응 $\stackrel{N}{0}$ 0
0
0
0
0
0

 BORCT
\times XPN213E2 BOR ET2

 BOR PN120R9 | BORET3 |
| :--- |
| \times PN2O1E2 |

 PN8BA3BO $\mathrm{C}-41$ BOR
X PN209E3 X PN209E3
BOR B43P X PN205E3
BOR PN123 BOR PN123
RES PN1 $19 R 24$
 RES PN122B23
PN25BOR苐 B1P2680R
F20 5 M BOR B12P
BOR PNG98B
 BORPN290
BOR PN115 BOR PN1 15
BOR PNSE25 BOR－E6／4
文荡

PSC18-SO	77.0
58.0	

 \(\begin{array}{ll}\text { PSC18-so } & 77.0 \\ & 52.4\end{array}\)

750
74.0
52.0
75.0
욱욱웅뭉응ㅇㅇㅇㅇㅇㅇ
CLLAY
MARK
VEREBRD
MARL
MARL
MARL」
$\stackrel{4}{\longleftrightarrow} \underset{\sim}{2}$

Table 24. Pile/soil and dynamic measurements of data set PD (continued). Table 24. Pilesoii and dynamic measurements of data set PD (continued). .

993	3900	515	829

 8 LaRGe displacement piles in sand

$$
\begin{aligned}
& \text { CAPWAP ENERGY } \\
& \text { Rull APPROACH }
\end{aligned}
$$

Table 24．Pile／soil and dynamic measurements of data set PD（continued）．

Table 24．Pilesoin and dynamic measurements or data set PD（coninued）．
高 0.841

号

＂

Table 24．Pile／soil and dynamic measurements of data set PD（continued）．
CAPWAP ENERGY
capwap energy

Rull APPROACH

\qquad 0.639
0.656
0516
0.810 $-$ 8.40
5.90
530 웅유운 8웅융 $\stackrel{8}{\square}$品 $8 \times$ 형 믁 － 8 088 8 8 8
号
 small displacement ples in clay

 ك

 ك كَ كَ

Table 24．Pile／soil and dynamic measurements of data set PD（continued）．
CAPWAP ENERGY CAPWAP ENERGY APPROACH

NCH

8

高藏翤 ∞

\square

n
8%
꾼
梁울

CAPWAP ENERGY

8

号号示菏

－

둥

0
$\stackrel{2}{8}$骨覴品品品
为荡

$\stackrel{\text { a }}{\stackrel{a}{d}}$
Table 24. Pile/soil and dynamic measurements of data set PD (continued).
25.16
9.74
5.62
浐落
罳品品
－
202.0
$\substack{\text { and } \\ \text { and } \\ \text { and } \\ \text { and }}$

D16－32
300000
品䔺
웅
$\stackrel{\circ}{\circ}$ 윰
产品
웅

HP 10×12
BLows/
3 38

184	RES TP3	Sı
109	BOR TP1	SA
121	EOD TP2	sasi
151	EODPN3	sasi
420	TP1 EOD	SACL
421	BOR TP1	SACL
395	BOR－TP4	SASI
46	EODE18	ctst
80	Bor pna	stir
${ }^{8}$	EODPN4	sigr
23	Bor png	sasi
24	DD PN83	sasi
26	\times PN71	sasi
25	DD PN83	sasi
45	bor az 13	ctsi
28	\times PN8O	sasi
47	EOD J210	Cisi
86	EOD PN2	SIGR
27	\times PN8O	sASI
85	EOD PN2	SIGR
84	EOD PN1	SIGR
227	EOR PN12	SA
228	EOD PN2	SA
230	K7EOD	SASI
384	BOR TP1	sı
231	K2BOR	suSA

YS EVNd－YOB 96€
Table 24. Pile/soil and dynamic measurements of data set PD (continucd).

$\begin{aligned} & \text { REF. } \\ & \text { NO. } \end{aligned}$	PILE NAME	$\begin{aligned} & \text { SKIN } \\ & \text { SOIL } \end{aligned}$	TOE SOIL	$\begin{aligned} & \text { PLLE } \\ & \text { TYPE } \end{aligned}$	$\begin{gathered} \text { LEN. } \\ \text { FT } \end{gathered}$	$\begin{aligned} & \text { AREA } \\ & \text { IN2 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { E MOD } \\ & \text { KSI } \end{aligned}$	HAMMER	$\begin{aligned} & \text { FMX } \\ & \text { KIPS } \end{aligned}$	$\begin{aligned} & \text { EMX } \\ & \text { K-FT } \end{aligned}$	$\begin{aligned} & \text { VMX } \\ & \mathrm{FT} / \mathrm{S} \end{aligned}$	$\begin{gathered} \text { DMX } \\ \text { IN } \end{gathered}$	BLOWS/ inch	$\begin{aligned} & \text { CAPWAP } \\ & \text { Ruh } \\ & \text { KIPS } \end{aligned}$	$\begin{aligned} & \text { ENERGY } \\ & \text { APPROACH } \\ & \text { KIPS } \end{aligned}$
297	RES PNS	SA	CL	MONO 12	56.0	9.0	30000.0	ICE 520	309.0	9.62	7.00	0.622	40.00	310	357
373	RES TP2	SA	CL	PIPE 12	88.0	6.9	300000	MKT DE30	162.0	7.55	14.00	0.743	20.00	172	228
292	BOR TP1	SA	CL	MONO 12	62.0	9.0	300000	ICE 520	350.0	12.64	11.50	0.703	2.25	400	264
414	BOR PN3	CL	CL	PIPE24	85.1	54.8	30000.0	K35	969.8	19.38	10.00	0.659	11.00	409	620
241	E2 BOR	CL	CL	timber	47.0	50.0	1602.0	MKT 1083	1838	3.93	11.74	0.343	15.00	143	230
372	RES TP1	SA	CL	PIPE 12	90.0	7.0	30000.0	MKT DE30	148.0	7.94	13.00	0.830	11.67	198	208
379	A4-21-EO	CL	CL	PIPE26	888.0	78.5	29700.0	D62	1597.6	35.71	11.56	0.564	4.17	821	1066
298	RES PN6	SA	CL	MONO 12	51.0	9.0	30000.0	ICE 520	293.0	7.29	7.60	0.485	130.00	312	355
375	RES TP4	SA	cL	PIPE 12	78.0	7.0	30000.0	MKT DE30	161.0	5.42	10.40	0.641	10000	131	200
240	A2 EOID	CL	cL	tmber	42.0	50.0	1300.0	MKT 10B3	172.9	6.19	11.56	0.711	2.00	71	123
374	RES TP3	SA	cL	PIPE 11 NU	92.0	161	300000	MKT DE30	2760	9.93	9.20	0.868	767	238	239
413	BOR PN3	CL	cL	PIPE24	85.1	54.8	30000.0	K35	943.9	25.74	10.24	0.882	9.00	374	622
296	RES PN4	SA	CL	MONO 12	520	90	30000.0	ICE 520	320.0	9.75	9.20	0.602	13.00	346	345
157	BOR T4	CLSI	cL	PIPE 12.75	66.0	19.2	30000.0	D30	502.0	17.43	13.50	0.517	500	288	583
163	EOD T_{4}	CLsi	cL	PIPE 12.75	660	192	30000.0	D30	5140	16.72	13.00	0.531	250	244	431
2	RES PNG	SA	CLSI	MONO 11	380	8.1	30000.0	D22.02	316.0	20.56	12.80	1.037	317	271	365
108	EOD TP23	SA	CLSI	MONO14 NU	420	81	30000.0	D22	1430	747	11.30	0.895	167	124	120
111	BOR TP24	SA	CLSI	MONO14 NU	420	8.1	30000.0	D22	262.0	15.91	12.70	0.899	283	224	305
12	EOD TP12	SA	CLSI	MONO	440	81	30000.0	D16-32	282.0	11.45	14.30	0.741	2.50	246	241
110	BOR TP23	SA	CLSI	MONO14 NU	42.0	8.1	30000.0	D22	278.0	14.96	12.50	0.852	2.83	226	298

Table 24. Pile/soil and dynamic measurements of data set PD (continued). CAPWAP ENERGY Table 24. Pile
Tabe 24. Pilsil (coninued).

※ BLOWSI

8

[^7]| 10 |
| :--- |
| T/S |
| 10 |

32 miscellaneous pile types in sand

Table 24．Pile／soil and dynamic measurements of data set PD（continued）．

気要甹	8
$\underset{y}{z} \geq$	
${ }_{3}{ }^{\text {¢ }}$	
$\underset{\sim}{\text { ¢ }}$	
\times	
－	
$\underset{\sim}{9} \underset{\sim}{2}$	
妥	
空可	
岗 $\stackrel{u}{\square}$	
\％	
豆言	
崇宸	
㟧	

Table 25. Side/tip quake and damping parameters of data set PD.

REF NO.	PILE NAME	$\begin{aligned} & \text { SKIN } \\ & \text { SOIL } \end{aligned}$	$\begin{aligned} & \text { TOE } \\ & \text { SOIL } \end{aligned}$	$\begin{aligned} & \text { PILE } \\ & \text { TYPE } \end{aligned}$	side quake (In)	TIP QUAKE (in)	SIDE DAMPING (s/ft)	damping (s / ft)
1	EOD PN6	SA	SICL	MONO 11	0.100	0.390	0.490	0.070
2	RES PNG	SA	CLSI	MONO 11	0.100	0.530	0.600	0.100
3	BOR PA35	SASI	SASI	PSC 20	0.100	0.300	0.200	0170
4	BOR PM24	SASI	SASI	PSC 20	0.100	0.200	0.616	0.249
5	EOD PA8	NA	SA	PSC 18	0.100	0.280	0.040	0.340
6	EOD PN165	NA	NA	CEP 12.75	0105	0.265	0.394	0.175
7	EOD PN210	NA	NA	CEP 12.75	0.110	0.230	0.270	0.200
8	EOD PN15E	NA	SAGR	CEP 10.75	0.090	0.180	0.299	0.350
9	PN1	NA	SA	CEP 16	0.100	0.420	0.350	0.473
10	BOR TP6	SASI	CLSI	PSC 12	0.070	0.070	0.091	0.773
11	EOD TPS	SASI	CLS	PSC 12	0100	0.133	0.037	0.651
12	EOD TP12	SA	CLSI	MONO	0080	0.080	1.200	0.050
13	BOR 0418	Clshale	DOLOMITE	OEP9 6	0080	0.050	0.458	0.473
14	BOR 13	CLSHALE	DOLOMITE	OEP96	0.100	0.080	0.550	0.600
15	EOD 0205	CLSHALE	DOLOMITE	OEP96	0.100	0.080	1.025	0.555
18	EOD D918	CLShale	DOLOMITE	OEP 96	0100	0.080	0.514	0.971
17	EOD J1	CLSHALE	DOLOMITE	OEP96	0100	0.100	0.700	0.550
18	ECD J8	CLSHALE	DOLOMITE	OEP 96	0.100	0.120	0.481	0.510
19	RES TN12	AGDITE	AGDITE	PCC 16	0.140	0.170	0.513	0.470
20	BOR CT	Agdite	Agoite	PCC 16	0110	0.110	0.466	0.345
21	BOR TN	agdite	AGdite	PCC 16	0.160	0.190	0.296	0.500
22	EOD PN1	NA	NA	PSC 24 Nu	0.100	0.350	0.338	0.225
23	BOR PN9	SASI	SASI	HP 12x74	0096	0.080	1.439	0.194
24	DD PN83	SASI	SASI	HP 12x53	0050	0.150	0.620	0.051
25	DD PN83	SASI	SASI	HP 12x53	0040	0.040	0.486	0.042
26	X PN71	SASI	SASI	HP 12x53	0050	0.050	0.447	0035
27	X PN80	SASI	SASI	HP 12x53	0040	0.150	0.270	0.101
28	X PN80	SASI	SASI	HP 12x53	0060	0.060	1.201	0.052
29	BOR TB1	SASI	SASI	timber	0100	0.860	0.500	0.030
30	BOR TP114	SASI	SASI	PSC 12	0100	0600	0.547	0.065
31	BOR TP2	SASI	SASt	PSC 12	0130	0.150	0.991	0.210
32	BOR TP28	SASI	SASI	PSC 12	0100	0.350	0.887	0.109
33	EOD TP114	SASI	SASI	PSC 12	$0 \cdot 00$	0.370	0.159	0.039
34	EOD TP28	SASI	SASI	PSC 12	0100	0.200	0.250	0.037
35	EOD PN1	Cl	TILL	CEP 1075	0080	0.300	0.400	0.300
36	OD PN25	NA	NA	PSC 30 NU	0100	0.200	0.150	0.300
37	EOD PN25	NA	NA	PSC 30 NU	0080	0.120	0.256	0.282
38	EOR PN30	NA	NA	PSC 30	0143	0.255	0.011	0.354
39	BOR D12N	Cl	Cl	HP 10×42	0100	0.115	0571	0638
40	EOD D18E	CL	CL	HP 10×42	0100	0.130	0.292	0.574
41	EOR D110s	CL	TILL	HP 10×42	0140	0.140	0.770	0.750
42	EOR D112E	CL	TILL	HP 10×42	0100	0.120	0.722	0.648
43	EOR DEW	CL	thl	HP 10×42	0.130	0.200	0.164	0.607
44	BOR A213	CLSI	SASI	OEP 12	0:00	0.150	0.439	0.112
45	EOD E18	CLSI	SASI	OEP 12	0100	0.950	0.103	0.064
46	EOD 3210	CLSI	SASI	OEP 12	0100	0.520	0.252	0.053
47	RES PN125	SI	SI	PSC 24	0060	0.450	0.481	0.162
48	RES PN125	sı	sı	PSC 24	0091	0.400	0.182	0.011

Table 25. Side/tip quake and damping parameters of data set PD (continued).

$\begin{aligned} & \text { REF } \\ & \text { NO. } \end{aligned}$	PILE NAME	SKIN SOIL	TOE SOIL	pile TYPE	side quake (in)	TIP QUAKE (in)	SIDE CAMPING (s / ft)	TIP DAMPING ($\mathrm{s} / \mathrm{f} \mathrm{t}$)
49	EOD PN12	CL	ROCK	HP 10×57	0060	0.050	0.300	1100
50	EOO B611	CL	TILL	PSC 16	0130	0.400	0385	0169
51	EOD PIT6NW	CL	TILL	PSC 14	0.120	0.460	0.295	0.306
52	EOD PN10	CL	TILL	PCC 14	0120	0.320	0.140	0.250
53	RES PN9	CL	TILL	PCC 14	0.120	0.320	0.272	0.181
54	RES PN20	CL	TILL	PCC 14	0.153	0.199	0.150	0.287
55	RES PN50	CL	TILL	PCC 14	0.167	0.211	0.500	0.268
56	DD TP15	CLS	CLSI	PSC 18	0.100	0.420	0.150	0.100
57	DD TP15	CLSI	CLSI	PSC 18	0.100	0.350	0.150	0.100
58	DD TP16	CLSI	CLSI	PSC 14	0060	0.200	0.140	0.030
59	DD TP16	CLS	CLSI	PSC 14	0070	0220	0500	0.054
60	OD TP16	CLSI	CLSI	PSC 14	0.100	0.150	0.650	0.200
61	RES TP15	CLSI	CLSI	PSC 18	0.080	0.090	0.641	0.133
62	RES PN119R24	Sı	COOPERMARL	PSC 24	0070	0.100	0.510	0.040
63	RES PN 122823	SI	COOPERMARL	PSC 24	0.120	0.500	0.404	0061
64	BOR PNI20R9	SI	COOPERMARL	PSC 24	0100	0.450	0.350	0.050
65	BOR PN121R9	S	COOPERMARL	PSC 24	0100	0.450	0.360	0.060
66	BOR PN280	CLSA	COOPERMARL	HP 14×73	0080	0.090	0.995	0.134
67	BOR PN225	CLSI	COOPERMARL	PSC 18 NU	0100	0120	0.820	0.141
68	BOR TP3	ALLUVIAL	CL	CEP 12×0.18	0.100	0180	0.696	0.550
69	DD TP2	ALLUVIAL	CL	CEP 12×0.18	0091	0.650	0.355	0.300
70	EOD PN392	CLS	SA	PSC 20	0090	0.300	0.111	0.433
71	EOD PN396	CLSI	SA	PSC 20	0160	0.330	0.320	0250
72	EOD PN398	CLS	SA	PSC 20	0120	0.300	0.212	0.390
73	EOD PNE17	SI	Shale	CEP 11×04	0100	0.320	0.359	0.859
74	BOR PN3	SIGR	SASI	CEP 12×06	0150	0.300	0.254	0.198
75	BOR PN4	SIGR	SASI	OEP 12×0 6	0100	0.170	0.250	0.500
76	BOR TP11	SASI	SA	PSC 36	0160	0.330	0.277	0.370
77	BOR TP11	SIGR	SASI	PSC 38	0.140	0.330	0.280	0.344
78	BOR TP21	SASI	SA	PSC 36	0.125	0.300	0.388	0.300
79	EOD PN1	SIGR	SASI	HP 12×74	0100	0.150	0.250	0.300
80	EOD PN2	SIGR	SASI	HP 10×42	0100	0.520	0.257	0250
81	EOD PN2	SIGR	SASI	HP 10×42	0100	0.550	0.180	0.180
82	EOD PN3	SIGR	SASI	CEP 12×08	0150	0.250	0.170	0.220
83	EOD PN4	SIGR	SASI	OEP 12×06	C 120	0.230	0.250	0.300
84	EOD TP11	SIGR	SASI	PSC 36	0130	0.250	0.312	0.415
85	EOD TP13	SIGR	SASI	PSC 36	0150	0.230	0.300	0.430
86	EOD TP21	SASI	SA	PSC 36	0170	0.300	0.360	0.321
87	EOD TP23	SIGR	SASI	PSC 54	0150	0.200	0.300	0.650
88	EOD PN7E3	NA	NA	PSC 30	0108	0.254	0.030	0.311
89	BOR PNPE28	NA	na	PSC 30	0073	0.143	0.572	0500
90	EOD TP4	NA	nA	PIPE 1075	0100	0.410	0.300	0.451
91	BOR SHDI	CLSA	LIMESTONE	HP 12×53	0.100	0.300	0.319	0.042
92	EOD SHOT	CLSA	LIMESTONE	HP 12×53	0080	0.450	0.323	0.067
93	EOD ST1	CLSA	LIMESTONE	PIPE 14	0100	0.250	0.323	0.154
94	EOR ST1	CLSA	LIMESTONE	PIPE 14	0100	0.250	0.178	0.076
95	BOR PST1	SASI	ROCK	PIPE 12.75	0080	0.080	0.200	0.500
96	EOD P3T1	SAS!	ROCK	PIPE 1275	0080	0200	0.120	0.400
				276				

Table 25. Side/tip quake and damping parameters of data set PD (continued).

$\begin{aligned} & \text { REF } \\ & \text { NO. } \end{aligned}$	PiLE name	$\begin{aligned} & \text { SKIN } \\ & \text { SOIL } \end{aligned}$	TOE SOIL	$\begin{aligned} & \text { PILE } \\ & \text { TYPE } \end{aligned}$	SIDE QUAKE (in)	TIP QUAKE (in)	SIDE DAMPING (s / ft)	DAMPING (s / ft)
97	EOD P4T1	SASI	ROCK	PIPE 12.75	0.100	a. 250	0.030	0330
98	BOR PN 123	SI	COOPERMARL	PSC 24	0.050	0.700	0070	0099
99	BOR PN123R7	SI	COOPERMARL	PSC 24	0.050	0.500	0.106	0012
100	EOD TP23	SA	CLSI	MONO 14 NU	0.150	0.500	0.300	0.250
101	BOR TP1	SA	SA	HP 14x73	0.100	0.330	0.250	0050
102	BOR TP23	SA	CLSI	MONO 14 NU	0.110	0.300	0.637	0.044
103	BOR TP24	SA	CLSI	MONO 14 NU	0.130	0.400	0.589	0.069
104	BOR PN608	CLSA	SA	PIPE/PSC14	0.098	0.244	0.250	0.350
105	BOR PN705	CLSA	SA	PIPE/PSC14	0.100	0.220	0.196	0.480
106	BOR PN795	CLSA	SA	PIPE/PSC14	0.100	0.260	0.200	0.530
107	BOR PN833	CLSA	SA	PIPE/PSC14	0.100	0.110	0.146	0.400
108	BOR PN834	CLSA	SA	PIPE/PSC 14	0.100	0.120	0.156	0.500
109	BOR PN835	CLSA	SA	PIPE/PSC14	0.080	0.100	0200	0.400
110	BOR PN836	CLSA	SA	PIPE/PSC14	0.080	0.080	0.350	0.500
111	SOR PN11	CLSA	LImestone	PSC 12	0.100	0.220	0.100	0.520
112	BOR PN115	CLSA	LIMESTONE	PSC 12	0.100	0.150	0.125	0.700
113	EOD TP2	SASI	SA	HP 12×179	0.112	0.391	0.040	0.240
114	BOR PN2	SI	SASI	HP/PSC24	0.120	0.080	0.504	0.001
115	EOD PN22SE	SA	SANDSTONE	PSC 30	0.090	0.250	0.172	0.250
116	BOR ET2	CLSI	COOPERMARL	HP/PSC24	0.092	0.043	0230	0.100
117	BOR ET2	CLSI	COOPERMARL	PSC 24	0.082	0.425	0.362	0.148
118	EOD TP1	SASI	ROCK	PSC 12	0470	0.240	0200	0.540
119	EOD TP2	SASI	ROCK	PSC 12	0050	0.290	0.120	0.650
120	BOR PN11B1	CLSA	COOPERMARL	HP/PSC NU	0.128	0.120	0.480	0021
121	BOR ET3	CLSI	COOPERMARL	PSC	0096	0.350	0.150	0350
122	BOR ET4	CLSI	COOPERMARL	HPIPSC	0091	0080	0.250	0.150
123	RES PN 120	CLSI	COOPERMARL	PSC	0.080	0360	0.497	0.057
124	EOD PNG	NA	NA	PSC	0.100	0.280	0.180	0.180
125	EOD PN7	NA	NA	PSC NU	0.070	0.100	0.100	0.130
128	EOD PN16	CLSI	SAGR	PIPE 14	0.060	0.300	0.400	0.550
127	RES TP2	CLSI	SAGR	PIPE 12	0.080	0.310	1.100	0.070
128	BOR PN17	CLSI	SAGR	PIPE 14	0.071	0.160	0.810	0.605
129	80R PN28	CLSI	SAGR	PIPE 14	0.050	0.100	0.749	0.425
130	BOR PN7E	SA	SAStone	PSC 30	0090	0.080	0.200	0.628
131	BOR PN7N8	SA	SASTONE	PSC 30	0.078	0.070	0.507	0.625
132	EOD PNEE25	SA	sastone	PSC 30 NU	0.100	0.240	0.175	0.200
133	EOD PNSE18	SA	SASTONE	PSC 30 NU	0.100	0.270	0.160	0.220
134	BOR PN5E19	SA	LIMESTONE	PSC 30	0.060	0.190	0.681	0.336
135	80R PNSE22	SA	LIMESTONE	PSC 30	0.070	0.170	0.800	0.320
136	BOR PNSE25	SA	LIMESTONE	PSC 30	0.060	0.100	0.527	0.253
137	BOR PN5	SA	Sastone	PSC 30	0.053	0.260	0.181	0.305
138	EOD PN4	SA	sastone	PSC 30	0.100	0.250	0.060	0.260
139	EOD TP23	SA	Sı	MONO NU	0.100	0.600	0.410	0.062
140	EOD TP27	SA	Sı	MONO NU	0.090	0.700	0.451	0.042
141	BOR PN12	SA	SA	CEP 16	0.060	0.100	0.462	0.759
142	EOD PN12	SA	SA	CEP 16	0.060	0.160	0.620	0.348
443	EOD PN3	SASI	SA	HP 12x74	0.170	0.250	0.120	0.420
144	BOR R1	clsı	CL	HP 14×73	0.110	0.110	1.644	0.198

Table 25. Side/tip quake and damping parameters of data set PD (continued).

$\begin{aligned} & \text { REF } \\ & \text { NO. } \end{aligned}$	PILE NAME	$\begin{aligned} & \text { SKIN } \\ & \text { SOIL } \end{aligned}$	$\begin{aligned} & \text { TOE } \\ & \text { SOIL } \end{aligned}$	$\begin{aligned} & \text { PILE } \\ & \text { TYPE } \end{aligned}$	SIDE QUAKE (in)	TIP Quake (in)	SIDE DAMPING (s/t)	damping (s / t)
145	BOR R10	CLSI	CL	HP 14×73	0.150	0.100	1.669	0.050
146	BOR T1	CLSI	CL	HP 10×42	0086	0.100	2.058	0.301
147	BOR T2	CLSI	CL	PSC 12	0.150	0.200	1.400	0080
148	BOR T3	CLSI	CL	PSC 14	0069	0360	0.700	0.400
149	BOR T4	CLSI	CL	PIPE 12.75	0.110	0.100	1.298	0.055
150	EOD R1	CLSI	CL	HP 14x73	0.140	0.120	0.898	0.196
151	EOD R10	CLSI	CL	HP 14×73	0.960	0.100	1.508	0.052
152	EOD T1	CLSI	CL	HP 10×42	0.100	0.270	1631	0.047
153	EOD T2	CLSI	CL	PSC 12	0.220	0.200	0838	0.032
154	EOD 73	CLSI	CL	PSC 14	0.060	0.310	0.750	0.247
155	EOD T4	CLSI	CL	PIPE 12.75	0.120	0.180	0.950	0.025
156	BOR PN1040	CLSI	SA	PSC 14	0.060	0.100	0.404	0.231
157	BOR PN1056	CLSI	SA	PSC 14	0.100	0.360	0.311	0.400
158	BOR PNBGGA	SA	limestone	PIPE 9.6	0.200	0.310	0.220	0.634
159	BOR PN8988	SA	LIMESTONE	PSC 14	0.050	0.050	1.347	0.213
160	EOD PNB1	TILL	ROCK	CEP 18	0.100	0.280	0.250	0.200
161	EOD PNB4	TILL	ROCK	CEP 18	0.100	0.320	0080	0.701
162	EOD PNO10	CLTILL	ROCK	OEP 18	0.100	0.320	0.279	0.492
163	EOD B12	NA	NA	PIPE 14	0.250	0.330	0.349	0.319
164	EOD 824	NA	NA	PIPE 14	0.140	0.380	1.300	0.283
165	\times TP7	SA	SA	MONO	0.050	0.120	0.993	0.027
168	EOD TP12	SA	si	MONO	0.040	0.040	1.200	0.150
157	EOD TP2	SA	SI	MONO	0.050	0.050	0.800	0.120
168	EOD TPS	SA	Sı	MONO	0.050	0.050	0.749	0.093
169	EOD PN2	SA	SI	MONO	0.050	0.170	0.800	0.080
170	X PNA17.5	SA	SA	PIPE 16	0.060	0.230	0.150	0.453
171	BOR PNH218	SI	COOPERMARL	HPIPSC	0.150	0.150	0.300	0.450
172	EOD PN7	CLSA	LIMESTONE	HP 10×57	0.106	0.090	0.350	0.534
173	EOR PN1050	SASI	SA	PSC 14	0.080	0.250	0.313	0.095
174	EOD TPS	Sı	GR	PIPE 12	0.150	0.220	0.600	0.350
175	RES TP2	SI	GR	PIPE 12	0.150	0.170	0.751	0.436
176	RES TP3	SI	GR	HP 10×12	0100	0.165	0.600	0.220
177	EOD TP1	CLSA	CLSA	HP 10×42	0.098	0.200	0.250	0.150
178	EOD PN38	CL	TILL	HP 12×74	0.128	0.100	0900	0.450
179	EOD PN40	CL	TILL	HP 12x74	0.130	0.100	1.000	0.500
180	BOR PN147	SASI	COOPERMARL	HP 14×89	0.089	0.100	1.494	0.254
181	BOR PN224	SASI	COOPERMARL	HP 12×53	0.050	0.250	1.010	0.154
182	TP2 BOR	SI/CL	SA	PSC 12	0.120	0.250	0.250	0.210
183	BOR TP1235	SA	CLSA	PSC 14	0100	0.150	0.355	0.748
184	BOR TP1259	SA	CLSA	PSC 14	0.100	0.160	0.514	0.530
185	DO PN355E8	SASI	limestone	HP 10×42	0100	0.210	0.320	0.430
186	DD PN375P1	SASI	limestone	HP 10×42	0100	0.210	0.297	0.492
187	EOD PN37502	SASI	LIMESTONE	HP 10×42	0.100	0.160	0.320	0.618
188	\times TP3	CLSA	LIMESTONE	CEP	0.099	0.070	0.450	0.630
189	BOR PN14	SASI	SA	PSC 14	0.070	0.050	1.009	0.211
190	BOR PN24	SASI	SA	PSC 14	0.070	0.050	0.820	0.100
191	C-41 BOR	COOPMAR	COOP.MAR	PSC 18	0.059	0.150	1.026	0.289
192	RES PN810	CLSA	COOPERMARL	PSC/HP	0.338	0.349	0.250	0.200

Table 25. Side/tip quake and damping parameters of data set PD (continued).

$\begin{aligned} & \text { REF } \\ & \text { NO. } \end{aligned}$	PILE NAME	$\begin{aligned} & \text { SKIN } \\ & \text { SOIL } \end{aligned}$	$\begin{aligned} & \text { TOE } \\ & \text { SOIL } \end{aligned}$	$\begin{aligned} & \text { PILE } \\ & \text { TYPE } \end{aligned}$	side quake (in)	TIP QUAKE (in)	$\begin{gathered} \text { SIDE } \\ \text { DAMPING } \\ \text { (sift) } \end{gathered}$	OAMPING (s / ft)
193	XPN 2	CLSI	COOPERMARL	PSC/HP	0.157	0.186	0.264	0.042
194	X PNB141	NA	NA	PIPE 12.75	0.100	0.200	0.010	0.400
195	X PND161.1	NA	NA	PIPE 12.75	0.100	0.260	0.008	0.582
198	PN8B4380	COOP MAR	COOP MAR	$18^{\circ} \propto$ ¢T.	0.160	0.400	0.390	0.050
197	PN25BOR	COOP MAR	COOPMAR	24 OCT.	0.275	0.340	0.833	0.211
198	BOR 1481	COOP MAR	COOP MAR	PPC240CT	0.250	0.300	0.620	0.140
199	PNGE BOR	MARK	MARK	240 Cr .	0.250	0.400	0.720	0.122
200	BOR21312	COOP MAR	COOP MAR	PPC24OCT	0.320	0.370	0.414	0.148
201	OD PN69	CLSI	SA	PSC 12	0.100	0.200	0.020	0.554
202	EOD PN232	CLSI	SA	PSC 12	0.100	0.250	0.105	0.369
203	EOD PN244	CLSI	SA	PSC 12	0.100	0.340	0.012	0.256
204	EOD PN318	CLSI	SA	PSC 12	0100	0.190	0.086	0.516
205	EOD PN332	CLSI	SA	PSC 12	0.100	0.460	0.075	0.185
208	EOD TP1	CLSI	SA	PSC 12	0.096 .	0.190	0.040	0.398
207	BOR PS	SACL	SA	PPC 14	0.098	0.150	0.120	0.407
208	EOD P7	SACL	SA	PPC 14	0.060	0.310	0.250	0.340
209	EOD P7	SACL	SA	PPC 14	0.060	0.270	0.250	0.340
210	EOD P 10	SACL	SA	POC 14	0.080	0.180	0.255	0.400
211	EOD P11	SACL	SA	PPC 14	0.100	0.100	0.670	0.200
212	EOD P9	SACL	SA	PPC 14	0.100	0.265	0.300	0.150
213	EOD P8	SACL	SA	PPC 14	0.080	0.200	0.300	0.200
214	EOID P6	SACL	SA	PPC 14	0.060	0.110	0.350	0.250
215	BOR PNi10	SACL	CLSI	PSC 16	0.080	0.090	0.920	0.540
218	BOR PN111	SACL	CLSI	PSC 16	0.100	0.110	1.100	0.100
217	EOD PN110	SACL	CLSI	PSC 16	0.070	0.140	0.550	0.150
218	EOD PN111	SACL	CLSI	PSC 16	0.044	0.072	0.840	0.170
219	EOR PN12	SA	SACOBBL	HP14x89	0.100	0.145	0.782	0.483
220	EOD PN2	SA	SACOBBL	HP14x89	0.125	0.200	0.563	0.433
221	Pile 6 b	cusi	ROCK	HP14x117	0.100	0.100	0.700	0.150
222	K7EOD	SASI	SASI	HP14x73	0.050	0.250	1.400	0.200
223	K2BOR	SIISA	SUSA	HP14x73	0.047	0.100	1.800	0.220
224	BOR TP13	SA	LIMESTON	HP14x74	0.060	0.055	0.218	0.550
225	EOD A-5-	CLAY	LIMESTON	HP10x57	0.060	0.060	0.700	0.720
228	7S.Abut	SANSUGR	SASI/GR	CEP 10.7	0.100	0.250	0.105	0.456
227	BORL-8	sucl	CLSI	PPC 12	0140	0.210	0.150	0.490
228	BOR 36	clay	Limeston	PPC	0.140	0.150	1.050	0.550
229	BOR TP2	Cl	SA	TIM. 12	0.040	0.040	1.117	0.350
230	BOR TP2	SACL	SACL	timber	0.040	0.040	1.400	0.416
231	TP2 BOR	SA	SA	timb. 12.	0.050	0.100	1.043	0.215
232	A2 EOID	CL	CL	timber	0.200	0.200	0.620	0.021
233	E2 BOR	CL	CL	timber	0045	0.130	1.200	0.200
234	PN:2 EOD	SA	SALGR	TIM 14	0.100	0.350	0.680	0.029
235	EOD TP3	CLSI	CLSI	HP 14x73	0.060	0.170	0.374	0.240
238	TP3 20FT	CL	CL	HP14x73	0.050	0.250	0.340	0.200
237	TP4 EOD	CL	CL	HP 14x73	0.060	0.200	0.330	0.090
239	TP4 B0R	CL	CL	HP 14×73	0.050	0.350	0.400	0.150
239	TP22 BOR	SIJCL	SIMCL	MONO	0.070	0.100	1.700	0.204
240	PN28EOD	CL	ROCK	HP10x57	0.095	0.060	0.310	1.050

Table 25. Side/tip quake and damping parameters of data set PD (continued).

$\begin{aligned} & \text { REF } \\ & \text { NO } \end{aligned}$	PILE NAME	$\begin{aligned} & \text { SKIN } \\ & \text { SOIL } \end{aligned}$	TOE SOLL	PILE TYPE	SIDE guake (in)	TIP QUAKE (in)	SIDE damping (sift)	DAMPING (s/ft)
241	EOD 40	CL	R¢K	HP 12×53	0.080	0.060	0.648	0.765
242	EOD J31	cusi	ROCK	PP14	0090	0.385	0.359	0.091
243	BOR J31	CLSI	ROCK	PP14	0078	0.229	0550	0.250
244	OD J 31	CLAY TIL	CLAY TIL	CEPPPE 1	0.100	0550	0.150	0.316
245	BOR PN20	SASI	LIMESTON	PSC 14	0.050	0.130	0.240	0.280
246	B1P2680R	SA	LIMESTON	PSC1898	0.145	0.215	0.193	0.215
247	B11P5080	SA	LIMESTON	PSC18.SQ	0.044	0.246	0.120	0.320
248	EODP. 26	SANDSTON	LIMESTON	PSC18-SQ	0.080	0.130	0.190	0.360
249	B13P48BO	SA	LIMESTON	PSC 18.50	0.044	0.246	0.120	0.320
250	EOD 258	Alluvilum	TILL ALL	CEPIPE 1	0.185	0.300	0.531	0.406
251	BOR 174	ALLuVIAL	alluvial	CEPIPE 1	0.114	0.100	0.800	0.570
252	BOR PN1	CLSI	SAGR	PIPE 12.75	0.100	0.220	0.578	0.775
253	DD PN10	CLSI	SHALE	PIPE 7	0.030	0.120	0.550	0.150
254	DD PN18	CLSI	Shale	PIPE 7	0.080	0.100	0.982	0.050
255	EOD PN10.375	CLSI	SHALE	PIPE 7	0080	0.800	0.284	0.020
256	EOD IP1	SASI	SASI	PSC 12	0100	0.242	0.550	0.240
257	EOOIP3	SASI	SASI	PSC 12	0094	0.364	0.416	0.156
258	199.EOD	SAPSISA	SA	12.PSPC	0.055	0.320	0.382	0.075
259	293.BOR	SAISASI	SA	$12^{\text {P PSPC }}$	0083	0.141	1.849	0.161
260	$177 . E O D$	SCORIA	CLAYSTON	HP10x57	0090	0.207	0.964	0.285
261	99.EOD	SCORIA	CLAYSTON	HP10x57	0090	0.303	0.705	0.281
262	BOR TP2	CL-SA	CL-SA	HP14	0070	0.230	0.350	0.250
263	BOR PNF2	CLSA	CLSA	PSC 12	0100	0.350	0.522	0.134
264	BOR PNH2O	CLSA	CLSA	PSC 12	0150	0.160	0.509	0.115
265	EOD PNH2O	CLSA	CLSA	PSC 12	0500	0.620	0.258	0.059
268	BOR K521C2	NA	na	PSC 14	0110	0.110	1.084	0.381
267	BOR M27A1	NA	NA	PSC 14	0100	0.150	1.065	0237
268	BOR M29C3	NA	NA	PSC 14	0170	0.160	1.164	0.105
269	BOR M29C3	NA	NA	PSC 14	0080	0.275	0.532	0.275
270	D0 S091	CLSA	ROCK	PSC 10 Nu	0080	0.100	0.400	1.000
271	EOD AB345	CLSA	ROCK	PSC :0	0060	0.100	0.173	0.273
272	BOR PNAAW	CLSA	LIMESTONE	PSC 14	0090	0.090	0.184	0.438
273	EOD TP3	Clsa	LIMESTONE	PSC 10 NU	0100	0.110	0.202	0.750
274	BOR TP2	CLSA	SA	PSC 14	0058	0.350	0.120	0.200
275	EOR TP1	CLSA	SA	PSC 14	0098	0.450	0.020	0.180
278	BOR PN23AA3	SASI	COOPERMARL	PSC 18	0100	0.500	0.106	0.062
277	BOR TP1	SA	CL	MONO 12	0078	0.050	1.316	0.107
278	RES PN1	SA	SA	MONO 12	0119	0.080	1.962	4.277
279	RES PN2	SA	SA	MONO 12	0038	0.020	1.250	0.250
280	RES PN3	SA	SA	MONO 12	0105	0.172	1.130	0.242
281	RES PN4	SA	CL	MONO 12	0090	0.060	1.801	0.297
282	RES PN5	SA	CL	MONO 12	0047	0.025	7.500	0393
283	RES PN6	SA	CL	MONO 12	0056	0.030	1.241	0.443
284	RES PNB	SAS	SASI	PSC 14	0060	0.060	1.430	0.138
285	EOD TP9	SASI	SASI	PSC 18	0080	0.240	0.294	0.177
288	RES 858	SASI	SASI	PSC 14	0090	0.165	1.082	0.410
287	RES Fi4	SASI	SASI	PSC 14	0090	0.240	0.523	0.147
288	RES G37	SASI	SASI	PSC 14	0110	0.300	0.482	0.105

Table 25. Side/tip quake and damping parameters of data set PD (continued).

$\begin{aligned} & \text { REF } \\ & \text { NO. } \end{aligned}$	PILE NAME	$\begin{aligned} & \text { SKIN } \\ & \text { SOIL } \end{aligned}$	toe SOIL	$\begin{aligned} & \text { PILE } \\ & \text { TYPE } \end{aligned}$	side QUAKE (in)	TiP QUAKE (in)	$\begin{aligned} & \text { SIDE } \\ & \text { DAMPING } \\ & (\mathbb{S} / t) \end{aligned}$	TIP dAMPING (s/ft)
289	RES PN2	NA	NA	PCC 18	0.100	0.240	0.287	0.115
290	RES PN7-61	NA	NA	PCC 18 NU	0.164	0.300	0.367	0.022
291	BOR TP1	SA	SANDSTONE	PSC 14	0.120	0.100	1621	0.049
292	BOR TP10	SA	SANDSTONE	PSC 14	0.100	0.116	1.473	0.138
293	BOR TP3	SA	SANDSTONE	PSC 18	0134	0.118	0.965	0.172
294	BOR TPS	SA	SANDSTONE	PSC 14	0186	0.200	0.841	0.183
295	80R TP6	SA	sandstone	PSC 18	0.130	0.224	0.530	0.250
296	BOR TP7	SA	SANOSTONE	PSC 14	0.140	0140	0.999	0.143
297	BOR TP8	SA	SANDSTONE	PSC 14	0.150	0.140	0.927	0.208
298	BOR TP9	SA	SANDSTONE	PSC 14	0.080	0114	1.447	0.450
299	EOD TP1	SA	SANOSTONE	PSC 14	0.100	0.500	0.157	0.065
300	EOD TP3	SA	SANDSTONE	PSC 18	0.100	0.260	0.102	0.254
301	EOD TP8	SA	SANDSTONE	PSC 14	0.100	0.340	0.311	0.135
302	B15T EOD	SACY	SA	monotube	0100	0.070	1.594	0.684
303	B9P3BOR	SACY	SACY	$18 . \mathrm{PCP}$	0.080	0.125	1.167	0.098
304	S4PC N2O	CL	CL	30 PPC	0.110	0.550	0.373	0.023
305	P3 P1.R	SIISA	SIISA	18 PPC	0.050	0.100	2.049	0.022
306	83E 2 RE	CL	CL	18 PPC	0.150	0.400	0.156	0.063
307	B70 P5	CL	SA	24 PPC	0.110	0.106	0.099	0454
308	PIER 7 P	SI/SA	SIISA	18 PPC	0.080	0.220	1.103	0.035
309	X PN201E2	SASI	COOPERMARL	PSC 18	0150	0.670	0.040	0.040
310	X PN205E3	SASI	COOPERMARL	PSC 18	0200	0.750	0.080	0.080
311	X PN209E3	SASI	COOPERMARL	FSC 18	0.120	0.700	0.060	0.110
312	X PN213E2	SASI	COOPERMARL	PSC 18	0.200	0.900	0.080	0.090
313	EOD TP1799	SASI	CL	PPC	0.040	0.620	0.250	0.080
314	RES TP1799	SASI	CL	PPC	0100	0.100	0.580	0.330
315	X TP1799	SI	SA	PPC	0050	0.450	0.250	0.150
316	$151 . E O D$	CUSA	SA	12 PPC	0085	0.179	0.350	0.350
317	X PN25BK	NA	NA	CEP 20×05	0140	0.140	0.600	0.650
318	\times PN29K	NA	NA	CEP 20×05	0260	0.210	0.350	0.550
319	X PN3OK	NA	NA	CEP 20x0 5	0200	0.150	0.300	0.350
320	X PN2031	SASI	SAROCK	PSC 12	0100	0.320	0.207	0.261
321	BOR TP4	SASI	SA	CEP 1275	0100	0.250	0.183	0.707
322	EOD TP4	SASI	SA	CEP 1275	0060	0.320	0.320	0.481
323	BOR PN 13	CLSI	SASI	PSC 12	0060	0.400	0.470	0.025
324	BOR PN19	CLSI	SASI	PSC 12	0050	0.330	0.450	0.050
325	BOR PN218	CLSI	SASI	PSC 12	0210	0.180	0.300	0.220
326	BOR PN28	CLSI	SASI	PSC 12	0.150	0.170	1.000	0.050
327	BOR PN31	CLSI	SASI	PSC 12	0130	0.300	0.700	0.250
328	BOR PN37	CLSI	SASI	PSC 12	0180	0.180	0.400	0.440
329	BOR PN43	CLSI	SASI	PSC 12	0130	0.550	0.550	0.040
330	BOR PN49	CLSI	SASI	PSC 12	0100	0.100	0.650	0.200
331	EOD PN13	CLSI	SASI	PSC 12	0080	0.300	0.250	0.030
332	EOD PN213	CLSI	SASI	PSC 12	0050	0.400	0.150	0.050
333	EOD PN26	CLSI	SASI	PSC 12	0.070	0.300	0.180	0.070
334	EOD PN49	CLSI	SASI	PSC 12	0.150	0.500	0.200	0.030
335	EOR PN310	CLSI	SASI	PSC 12	0.130	0.145	0.250	0.550
336	X PNA3	CLSA	TILL	CEP 14×05	0.070	0.070	0.700	0.500

Table 25. Side/tip quake and damping parameters of data set PD (continued).

$\begin{aligned} & \text { REF } \\ & \text { NO. } \end{aligned}$	PILE nAME	$\begin{aligned} & \text { SKIN } \\ & \text { SOIL } \end{aligned}$	TOE SOIL	PILE TYPE	SIDE QUAKE (in)	TIP QUAKE (in)	$\begin{gathered} \text { SIDE } \\ \text { DAMPING } \\ \text { (s/ft) } \end{gathered}$	DAMPING (s / ft)
337	X PNES	CLSA	TILL	CEF 14×0.5	0.030	0.050	0.952	0.400
338	X PNG3	CLSA	TILL	CEP 14×0.5	0.200	0.120	0.750	0.200
339	BOR PN128	CL	TILL	PSC 14	0.326	0.218	0.350	0.530
340	BOR PN177	CL	TILL	PSC 14	0.318	0.174	0.320	0.650
341	EOD PN128	CL	THL	PSC 14	0.366	0.331	0.300	0.514
342	EOD PN177	CL	TILL	PSC 14	0.120	0.340	0.100	0.500
343	BOR TP1	CLSA	CL	PSC 18	0.060	0.170	0.580	0.130
344	BOR TP2	CLSA	CL	PSC 24	0.120	0.180	0.500	0.336
345	BOR TP3	CLSA	SA	PSC 18	0.062	0.090	0.650	0.400
346	BOR TP4	CLSA	CL	PSC 18	0.065	0.200	0.950	0.080
347	BOR TP5	CLSA	CL	PSC 24	0.130	0.369	0.350	0.118
348	BOR PN243	SI	SAGR	CEP 14×0.37	0.144	0.130	0.800	0.700
349	BOR PN317	sı	SAGR	CEP 14×0.37	0.134	0.153	0800	0.735
350	EOD PN317	sı	SAGR	CEP 14×0.37	0.150	0.430	0.550	0.180
351	RES TP13	SI	SIGR	CEF 14×0.37	0.095	0.060	0.950	0.150
352	RES TP8	SI	SIGR	CEP 14×0.37	0.050	0.050	1.100	0.090
353	RES TP1	SA	CL	PIPE 12	0.120	0.120	1.150	0.500
354	RES TP2	SA	CL	PIPE 12	0.200	0.160	0.700	0.700
355	RES TP3	SA	CL	PIPE 11 NU	0.077	0.069	0.400	0.270
356	RES TP4	SA	CL	PIPE 12	0.150	0.150	1.000	0.539
357	G-18-1.B	CUSA	SA	PIPE 10	0.100	0.152	0.550	0.872
358	151-BOR	CL,SC,S	SA	12 PPC	0085	0.142	0.380	0.385
359		NA	NA	PPC 12	0.075	0.150	0.360	0.380
350	A4-21-EO	CL	CL	26 PIPE	0.150	0.100	0.700	0.500
361	EOD PN3x014	CLSI	LIMESTONE	PIPE	0.167	0.190	0.250	0.400
362	EOD TP	CLSI	limestone	PIPE	0.140	0.200	0.353	0.677
363	TPs	SA	SA	¢T16.5	0.160	0.225	1.150	0.450
364	BOR TP1	SI	51	HP305MmX	0.080	0.300	1.800	0.100
365	80R 843P	COPERMAR	COOPERMARL	180 Ct.	0.140	0.220	0.865	0.234
368	BOR 312P	SASI	LIMESTON	PSC 18	0.035	0.080	0.174	0.798
367	EORPN20	SA	limeston	PSC18*SO	0.110	0.150	0.400	0.137
368	EODPN23	SA	LIMESTON	PSC18-Sa	0.110	0.150	0.400	0.137
369	EOD TF1	SAND SAT	SAND SAT	CEPIPE 1	0.100	0.250	0.640	0.440
370	BOR TF1	SA SATUR	SA SATUR	EICEPIPE	0.080	0.080	1.265	0.346
371	BORPNSO	SASI	SA	PP12.75	0.044	0.048	1.800	0.700
372	EOO-15-3	SA SI	Limeston	PSC10	0.060	0.100	0.201	0.463
373	BOR-TP4	SA SI	SA SI	HP14x+1	0.050	0060	0.720	0.030
374	BOR-PN43	SA	CL	MONO It	0.075	0.150	3.800	0.400
375	EOD-TF1	SA SI	SA SI	CEP16	0.090	0.240	0.157	0.974
376	BOR-ES/4	CL	LIMESTON	PSC16-50	0.080	0.100	0.465	0.395
377	BOR 20W8	NA	NA	PPC24	0.100	0.160	0.254	0.643
378	1R 8.120	SA SI	SA SI	COMPOSIT	0.197	0.180	0.500	0.090
379	EOR 027	SACL	SACL	PP14*	0.080	0.450	0.457	0.313
380	8.2P. 163	SACL	LIMESTON	24*Sc.	0.090	0.300	0.270	0.200
381	EODTP2	NA	Shale	HP10x57	0.083	0.185	0.330	0.707
382	BOR 1386	overburd	MARL	24-0ct	0.274	0.200	0.545	0.141
383	BOR 58.5	MARL	MARL	18 OCT.	0.180	0.180	1.208	0.071
384	F20 5 MI	SI	LIMESTON	24 PPC	0.100	0.180	0.058	0.244

Table 25. Side/tip quake and damping parameters of data set PD (continued).

$\begin{aligned} & \text { REF } \\ & \text { NO. } \end{aligned}$	PILE NAME	$\begin{aligned} & \text { SKIN } \\ & \text { SOIL } \end{aligned}$	TOE soil	$\begin{aligned} & \text { PILE } \\ & \text { TYPE } \end{aligned}$	side QUAKE (in)	TIP QUAKE (in)	side DAMPING (s/ft)	TIP DAMPING ($s / f t$)
385	EOD FHAS	SA	SA TILL	CEP18	0.100	0.320	0.250	0.170
388	BOR PN248	CLSA	COOPERMARL	HP 14x73	0.080	0.080	1.010	0.316
387	TP4EOD	SA	ROCK	HP12x74	0.080	0.340	0.100	0.480
388	PNB EOD	SA	Shale	HP10x57	0.090	0.127	0.234	0.651
389	PN7 EOD	SA	Shale	HP10x57	0.090	0.127	0.234	0.651
390	EOD PNT	CLSA	CL SA	CEPIPE24	0.075	0.330	0.240	0.116
391	BOR PN7	CLSI	CL SI	CEPIPE24	0.075	0.330	0.240	0.116
392	BOR PN3	CL	CL	24 PP	0.147	0.672	0.200	0.087
393	BOR PN3	CL	CL	24 PP	0.170	0.340	0.188	0.250
394	EOD PN1	SA	LIMESTON	18 PSC	0.075	0.220	0.281	0.133
395	BOR TP4	SA	SA	12 PP	0.250	0.340	0.550	0.450
398	BOR259	MARL	MARL	PPC180CT	0.110	0.110	0.720	0.102
397	BOR458	MARL	MARL	PPC180CT	0.120	0.200	0.800	0.103
338	TP2 BOR	SA SI	SA SI	24 PSPC	0.140	0.140	1.200	0.285
399	TP1 EOD	SACL	SACL	HP14x73	0.080	0.280	0.250	0.750
400	BOR TP1	SACL	SACL	HP14x73	0.080	0.170	0.550	0.838
401	PN BEOD	SA	LIMESTON	24 PSC	0.100	0.150	0.250	0.290
402	EOO TP2	CLSI	CLSI	HP14x73	0.090	0.320	0.240	0.208
403	BOR TP2	CLSI	CLSI	HP14x73	0.100	0.320	0.400	0.276

REFERENCES

American Society for Testing and Materials, 1992. "Standard Test Method for Piles Under Static Axial Compressive Loads," D-1143-81, Vol. 4.08, Sec. 4, pp. 195-205.

Abe, S., G. Likins, and C.M. Morgan. 1990. "Three Case Studies on Static and Dynamic Testing of Piles," Geotechnical News, December 1990, pp. 26-32.

Benjamin, J.R. and C.A. Cornell. 1970. Probability, Statistics, and Decision for Civil Engineers. McGraw-Hill.

Bernardes, G.D.P. 1989. Dynamic and Static Testing of Large Model Piles in Sand, Eng. Ph.D. Dissertation, Dept. of Civil Engineering, Norwegian Institute of Technology.

Bowles, J.E. 1988. Foundation Analysis and Design. McGraw-Hill, 4th ed.
Briaud, J.L. and C.M. Tucker. 1988. "Measured and Predicted Axial Response of 98 Piles," American Society of Civil Engineers Journal of Soil Mechanics and Foundations, Div. 114(9): 984-1001.

Bustamante, M.G. and L.P. Weber. 1988. "Dynamic and Static Measurements of Steel H-Pile Capacities," 3rd International Conference of Stress-Wave Theory in Piles, Ottawa, Canada, pp. 579-589.

Butler, H.D. and H.E. Hoy. 1977. Users Manual for the Texas Quick-Load Method for Foundation Load Testing. Federal Highway Administration, Office of Development, Washington, DC. Report No. FHWA-IP-77-8, 59 pp.

Chellis, R.D. 1961. Pile Foundations. McGraw-Hill. 2nd ed.
Cheng, S.S.M. and S.A. Ahmad. 1988. "Dynamic Testing Versus Static Loading Test: Five Case Histories," 3rd International Conference of Stress-Wave Theory in Piles, Ottawa, Canada, pp. 477-489.

Chernauskas, L.R. 1993. Dynamic Analysis of Plugged Piles in Clay, Master of Science Thesis submitted to the Department of Civil Engineering, University of Massachusetts-Lowell, 1993.

Cummings, A.E. 1940. "Dynamic Pile-Driving Formulas," Boston Society of Civil Engineers Journal 1925-1940, January 1940, pp. 392-413.

Davisson, M.T. 1972. "High Capacity Piles," Proceedings, Soil Mechanics Lecture Series on Innovations in Foundation Construction, American Society of Civil Engineers, Illinois Section, Chicago, March 22, 1972, pp. 81-112.

DeBeer, E.E. 1970. "Proefondervindellijke bijdrage tot de studie van het grandsdraagvermogen van zand onder funderinger op staal." English version, Geotechnique, Vol. 20, No. 4, pp. 387-411.

Dynamic Pile Monitoring and Pile Load Test Report Demonstration Project 66-Proposed Cimarron River Bridge U.S. 64, Buffalo, Oklahoma: FHWA Bridge and Demonstration Projects Divisions, February 1989.

Dynamic Pile Monitoring and Pile Load Test Report Demonstration Project 66Replacement Bridge State Route 115 over Missouri River, Bridgeton/St. Charles, Missouri: FHWA Bridge and Demonstration Projects Divisions, April 1989.

Dynamic Pile Monitoring and Pile Load Test Report Demonstration Project 66-I-80/480 Interchange, Omaha, Nebraska: FHWA Bridge and Demonstration Projects Divisions, October 1989.

Dynamic Pile Monitoring and Pile Load Test Report Demonstration Project 66-State Highway 77 Fore River Bridge Replacement, Portland-South Portland, Maine: FHWA Bridge and Demonstration Projects Divisions, April 1990.

Dynamic Pile Monitoring and Pile Load Test Report Demonstration Project $66-\mathrm{Mo}-\mathrm{Pac}$ Railroad Overpass Route LA, 415, West Baton Rouge, Louisiana: FHWA Bridge and Engineering Applications Divisions, November 1990.

Dynamic Pile Monitoring and Pile Load Test Report Demonstration Project 66-Hartford Bridge BRZ1444, White River Junction, Vermont: FHWA Technology Applications and Bridge Divisions, January 1991.

Dynamic Pile Monitoring and Pile Load Test Report Demonstration Project 66-State Route 15. Section 63M. Tioga County, Pennsylvania: FHWA Technology Applications and Bridge Divisions, December 1991.

DiMaggio, J. 1986. Dynamic Pile Monitoring and Pile Load Test Report-Proposed Relocated U.S. 61 over the Peosta Channel, Dubuque, Iowa: FHWA Bridge Division and Demonstration Projects Division, December 1986.

DiMaggio, J. 1991. Dynamic Pile Monitoring and Pile Load Test Report Demonstration Project 66-County Route 18 over Minnesota River, Bloomington, Minnesota: FHWA Engineering Applications and Bridge Divisions, January 1991.

Dumas, C. 1993. Dynamic Pile Monitoring and Pile Load Test Report Demonstration Project 66-Central Bridge over the Ohio River-U.S. 27 Campbell County, Kentucky: FHWA Technology Applications and Bridge Divisions, January 1993.

Edde, R.D. and B.H. Fellenius. 1990 "Static or Dynamic Test - Which to Trust," Geotechnical News, December 1990, pp. 28-32.

Fellenius, H.B. 1989. Guidelines for the Interpretation and Analysis of the Static Loading Test, Deep Foundations Institute.

Fellenius, H.B. 1991. "Pile Foundations," Chapter 13 of Foundation Engineering Handbook, edited by Hsai-Yang Fang. Van Nostrand Reinhold. New York, NY. 2nd edition.

Flaate, K. 1964. An Investigation of the Validity of Three Pile-Driving Formulae in Cohesionless Material, Norwegian Geotechnical Institute, Publication 56, Oslo, Norway.

Fox, E. 1932. "Stress Phenomena Occurring in Pile Driving," Engineering Journal, London, England, Vol. 134.

FPDS-3 Foundation Pile Diagnostic System-3, TNO Building and Construction Research, Delft, The Netherlands, 1993.

Graff, K.F. 1975. Wave Motion in Elastic Solids, Ohio State University Press, Columbus, Ohio.

Goble, G.G., G. Likins, and F. Rausche. 1970. Dynamic Studies on the Bearing Capacity of Piles - Phase III, Report No. 48, Division of Solid Mechanics, Structures, and Mechanical Design. Case Western Reserve University.

Goble, G.G., G. Likins, and F. Rausche. 1975. Bearing Capacity of Piles from Dynamic Measurements, Final Report, Ohio Dept. of Trans., OHIO DOT-05-75.

Goble, G.G., R.H. Scanlan, and JJ. Tomko. 1967. Dynamic Studies on the Bearing Capacity of Piles, Phase II, Volumes I and II, Case Institute of Technology.

Goble, G.G., F. Rausche, and G. Likins. 1980. "The Analysis of Pile-Driving: A State of the Art," Proceedings from the 2nd Conference on the Application of Stress-Wave Theory on Piles, Stockholm, Sweden, June 1980, pp. 1-34.

Gravare, C.J., G.G. Goble, F. Rausche, and G. Likins. 1980. "Pile-Driving Construction Control by the Case Method," Ground Engineering, pp. 21-24.

Highway Research Record No. 167. 1967. Bridges and Structure, Highway Research Board, Washington, DC.

Highway Research Record No. 333 1970. Pile Foundations, Highway Research Board, Washington, DC.

Holtz, R.D. and W.D. Kovacs, 1981. An Introduction to Geotechnical Engineering. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Housel, W.S. 1965. "Michigan Study of Pile-Driving Hammers," Proceeding of the ASCE Journal of Soil Mechanics and Foundations, Volume 91, No. SM5, September 1965, pp. 37-64.

Housel, W.S. 1970. "Pile Load Capacity: Estimates and Test Results," Proceeding of the ASCE Journal of Soil Mechanics and Foundations, Volume 92, No. SM4, July 1966, pp. 1-30.

Issacs, D. 1931. "Reinforced Concrete Pile Formula," Transactions of the Institute of Engineers, Australia, Vol. 12, pp. 312-323.

Iwanowski, T. 1987. "Stress-Wave Testing of Piles," Proceedings of the Intemational Conference on Foundations and Tunnels, University of London, March 1987, pp. 262-266.

Kazmierowski, T. and M. Devata. 1978. Pile Load Capacity Evaluation, HWY 404 Structures, Report EM-20, Ontario Ministry of Transportation and Communications, Engineering Materials Office, Soil Mechanics Section. July 1978.

Kazmierowski, T. and M. Devata. 1983. Evaluation of Selected Piles Under Axial and Lateral Loading Conditions - C.N.R./C.P.R. Structures Northwest Metro Arterial, Ontario Ministry of Transportation and Communications, Engineering Materials Office, Soil Mechanics Section. Feb. 1983.

Lambe, T.W. and R.V. Whitman, 1969. Soil Mechanics. John Wiley and Sons Inc., New York, NY.

Likins, G., F. Rausche, and M. Hussein, 1990. "Introduction to the Dynamics of Pile Testing," Geotechnical News, December 1990, pp. 21-23.

Lowery, L.L., TJ. Hirsh, T.C. Edwards, H.M. Coyle, and C.H. Samson, 1969. Pile-Driving Analysis - State of the Art Research Report 33-13 (Final), Texas Highway Department, Research Study No. 2-5-62-33.

McDonnell, J. 1991. The Energy Approach Method for the Prediction of Pile Capacity, A Research Project Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science (Unpublished).

Michigan State Highway Commission. 1965. A Performance Investigation of Pile-Driving Hammers and Piles.

Middendorp, P. and P.J. van Weel. 1986. "Application of Characteristic Stress-Wave Method in Offshore Practice." Proceedings of the $3^{\text {rd }}$ International Conference on Numerical Methods in Offshore Piling.

Ohio Department of Transportation. 1975. Bearing Capacity of Piles from Dynamic Measurements, Research Report OHIO-DOT-05-75, Final Report.

Olsen, R.E. and K.S. Flaate. 1967. "Pile-Driving Formulas for Friction Piles in Sand," ASCE Journal of Soil Mechanics and Foundations. Vol. 92(6): pp. 279-297.

Olsen, R.E. and N. Dennis. 1982. "Actual Capacity of Driven Pipe Piles in Clay," Proceedings of the Symposium on State of the Art in Offshore Geotechnical Engineering, American Society of Civil Engineers.

Paikowsky, S.G. 1982. Use of Dynamic Measurements to Predict Pile Capacity Under Local Conditions, M.Sc. Thesis, Dept. of Civil Engineering Technion-Israel Institute of Technology, July 1982.

Paikowsky, S.G. 1984. "Use of Dynamic Measurements for Pile Analysis," including PDAP-Pile-Driving Analysis Program, GZA Inc., Newton, Massachusetts, 1984.

Paikowsky, S.G., R.V. Whitman, and M.M. Baligh. 1989. "A New Look at the Phenomenon of Offshore Pile Plugging," Marine Geotech., 8(3): 213-230.

Paikowsky, S.G. 1990. Investigation of Pile Foundation Behavior, Northern Avenue Bridge, Boston, MA, Consulting/Research Report submitted to GZA, Inc.

Paikowsky, S.G. and R.V. Whitman. 1990. "The Effects of Plugging on Pile Performance and Design," Canadian Geotechnical Journal, Vol. 27, No. 3, August 1990.

Paikowsky, S.G. and L.R. Chernauskas. 1992. "Energy Approach for Capacity Evaluation of Driven Piles," 4th International Conference on the Application of Stress-Wave Theory to Piles, The Hague, The Netherlands, pp. 595-601.

Pile Dynamics Inc. 1990. Model GCPC Pile-Driving Analyzer, Manual.

Poulos, H.G. and E.H. Davis, 1980. Pile Foundation Analysis and Design, Robert E. Krieger Publishing Co., 2nd edition.

Prakash, S. and H.D. Sharma. 1990. Pile Foundations in Engineering Practice. John Wiley and Sons Inc., New York, NY.

Rausche, F., F. Moses, and G.G. Goble. 1972. "Soil Resistance Predictions from Pile Dynamics," ASCE Journal of Soil Mechanics and Foundations. Vol. 98, No. SM9, Sept. 1972, pp. 917-937.

Rausche, F., G.G. Goble, and G.E. Likins, 1985. "Dynamic Determination of Pile Capacity," Journal of Geotechnical Engineering, ASCE, Vol. III, No. 3, pp. 367-383.

Reiding, F.J., P. Middendorp, R.P. Schoenmaker, F.M. Middeldorp, and M.W. Bielefeld. 1988. "FPDS-2, A New Generation of Foundation Pile Diagnostic Equipment," $3^{\text {rd }}$ International Conference on Stress-Wave Theory in Piles, Ottawa, Canada, pp. 123-134.

Riker, R.E. and B.H. Fellenius. 1988. "Case Method Capacity Estimates for Piles in Glacial Soils," $3^{\text {rd }}$ International Conference on Stress-Wave Theory in Piles, Ottawa, Canada, pp. 565-578.

Ryan, T.P. 1989. "Linear Regression," Chapter 13 of Handbook of Statistical Methods for Engineers and Scientists, H.M. Wadsworth, editor. McGraw-Hill.

Schmertmann, J. 1991. "The Mechanical Aging of Soils," The $25^{\text {th }}$ Terzaghi Lecture, Journal of Geotechnical Engineering, ASCE, Vol. 117, No. 9, Sept. 1991, pp. 12881303.

Selby, K.G., M.S. Devata, P. Prayer, and D. Dundas, 1989. "Ultimate Capacities Determined by Load Test and Predicted by the Pile Anaiyzer," Proceeding of the 12th International Conference on Soil Mechanics and Foundation Engineering, Rio De Janeiro, August 13-18, 1989, pp. 1179-1182.

Smith, E.A.L. 1960. "Pile-Driving Analysis by the Wave Equation," Journal of Soil Mechanics and Foundations, American Society of Civil Engineers, August 1960, pp. 35-61.

Stokes, W.L. and D.J. Varnes, 1955. Glossary of Selected Geologic Terms, Colorado Scientific Society Proceedings, Volume 16.

Taylor, Donald W. 1948. Fundamentals of Soil Mechanics, John Wiley and Sons, Inc. 12th edition.

Terzaghi, K 1942. "Discussions of the Progress Report of the Committee on the Bearing Value of Pile Foundations," Proceedings ASCE, Vol. 68:311-323.

Texas Highway Department. 1973. Bearing Capacity for Axially Loaded Piles, Research Report 125-8-F, Sept. 1967-Aug 1973, pp. 134.

Thompson, C.D. and M. Devata. 1980. "Evaluation of Ultimate Bearing Capacity of Different Piles by Wave Equation Analysis," Proceedings from the 2nd Conference on the Application of Stress-Wave Theory on Piles, Stockholm, Sweden, June 1980, pp. 1-33.

Thompson, C.D. and G.G. Goble. 1988. "High Case Damping Constants in Sand," 3rd International Conference on Stress-Wave Theory in Piles, Ottawa, Canada, pp. 464-555.

Trow Report. 1978. Research Project: Dynamic Behavior of Foundation Piles and Driving Equipment. The Trow Group Ltd., Ontario, Canada.

Vanikar, S.N. 1984. Dynamic Pile Monitoring and Pile Load Test Report-I-90. Third Lake Washington Bridge). Seattle, Washington: FHWA Office of Highway Operations Demonstration Projects Program, April 1984.

Vanikar, S.N. 1987. Dynamic Pile Monitoring and Pile Load Test Report - Proposed Alsea River Bridge (Oregon Coast Highway 101), Walport, Oregon: FHWA Bridge and Demonstration Projects Divisions, June 1987.

Vanikar, S.N. 1987. Dynamic Pile Monitoring and Pile Load Test Report - Bridges on Colorado S.H. 55 (BRS 0055(4)), Crook, Colorado: FHWA Bridge and Demonstration Projects Divisions, August 1987.

Vesic, A.S. 1977. Design of Pile Foundations, National Cooperative Highway Research Program. Synthesis of Highway Practice, Publication No. 42.

Veneziano, D. 1993. Personal Communication.

[^0]: ${ }^{1}$ The Neolithic inhabitants of Switzerland supported their homes 12,000 years ago on wooden poles driven in shallow lakes. The ancient Egyptians depicted manpower pile-driving operations and failures. The Romans supported many of their bridges over the Rhine River with driven-timber piles.

[^1]: Pile-case legend: and $R=$ rock.

[^2]: - first letter denotes pile type: $A=$ all piles, $L=$ large displacement,
 - second letter denotes time of measurements: $A=$ anytime, $E=E O D, B=B O R$. - third letter denotes soil type: $A=$ all soils, $S=$ sand and silt, $C=c l a y$ and till, and $R=$ rock.

 Pile-case legend: $\mathbf{X X X}$:

[^3]: - first letter denotes pile type: $A=a l l$ piles, $L=$ large displacement,

 S=small displacement.

 - second letter denotes time of measurements: $A=$ anytime, $E=E O D, B=B O R$. third letter denotes soil type: $A=a l l$ soils, $S=s$ and and silt, $C=c l a y$ and till, and $R=$ rock.

 Pile-case legend:
 $X X X:$

[^4]: Pile-case legend: XXX - first letter denotes pile type: $A=a l l$ piles, $L=l a r g e$
 displacement, and $S=$ smail displacement.
 second letter denotes time of measurement: $A=$

 - third letter denotes soil type: $A=$ all soils, $S=$ sand and
 silt, $C=$ clay and till, and $R=r o c k$.

[^5]: Pile-case legend: $X X X$ - first letter denotes pile type: $A=a l l$ piles, $L=l a r g e$ - second letter denotes time of measurement: $A=$ anytime,
 $E=e n d$ of driving, and $B=b e g i n n i n g$ of restrike.

 - third letter denotes soil type: $A=$ all soils, $S=$ sand and silt, $C=$ clay and till, and $R=r o c k$.

[^6]: Pile-case legend: $\quad X X X$ - first letter denotes pile type: $A=$ all piles, $L=$ large
 second letter denotes time of measurement: $A=$ anytime,
 $E=e n d$ of driving, and $B=b e g i n n i n g ~ o f ~ r e s t r i k e . ~$
 third letter denotes soil type: $A=$ all soils, $S=$ sand and
 silt, $\mathrm{C}=$ clay and till, and $\mathrm{R}=$ rock.

[^7]:

